Supplementary Information

Structurally Ordered Pt-Zn/C Series Nanoparticles as Efficient Anode Catalysts

for Formic Acid Electrooxidation

Jing Zhu,[†] Xin Zheng,[†] Jie Wang,[†] Zexing Wu,[†] Lili Han,[‡] Ruoqian Lin,[‡] Huolin L. Xin,^{‡,§} and Deli Wang^{†,}*

[†] Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P.R. China

[‡]Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA

§ Department of Materials Science and Engineering SUNY Stony Brook University, Stony Brook, NY, 11794, USA

*E-mail: wangdl81125@hust.edu.cn.

Figure S1. XRD patterns of commercial Pt.

Figure S2. TEM images of commercial Pt.

Figure S3. XRD patterns of PtZn/C-200.

Figure S4. TGA curves of different samples.

Figure S5. Cyclic voltammograms of different electrocatalysts in 0.5 M H_2SO_4 purged with N_2 at room temperature and a sweep rate of 20 mV s⁻¹.

Figure S6. Linear sweep voltammograms of different electrocatalysts in 0.5 M H_2SO_4 + 0.5 M HCOOH at s sweep rate of 1 mV s⁻¹.

Figure S7. Cyclic voltammograms in 0.5 M $H_2SO_4 + 0.5$ M HCOOH purged with N_2 , sweep rate of 50 mV s⁻¹, at room temperature.

Figure S8 Cyclic voltammograms of the Pt/C and $Pt_3Zn_{10}/C-700$ in 0.5 M $H_2SO_4 + 0.5$ M HCOOH purged with N₂ at a sweep rate of 50 mV s⁻¹ after different electrochemical treatment condition, no pre-treatment (A), after 50 cycles between +0.05 V and + 0.9 V in 0.5 M H_2SO_4 (B), after 50 cycles between +0.05 V and +1.0 V in 0.5 M H_2SO_4 (C).

Figure S9. XPS spectra of carbon supported Pt_3Zn nanoparticles before and after heat-treatment.

Figure S10. XPS fine spectra of Zn 2p of $Pt_3Zn/C-300$, $Pt_3Zn/C-700$ and $Pt_3Zn_{10}/C-700$.

Figure S11. (a) Linear sweep voltammograms. (b) Comparison of total mass-based activities at +0.5 V.