## Supporting Information

## Pseudocapacitive behaviours of Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>@CNT coaxial nanocables for high-performance sodium-ion capacitors

Shengyang Dong, Laifa Shen, Hongsen Li, Ping Nie, Yaoyao Zhu, Qi Sheng and Xiaogang Zhang\*

Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.

Corresponding author: <u>azhangxg@nuaa.edu.cn (X. G. Zhang)</u>



Fig. S1 SEM and TEM images of pristine Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>.



**Fig. S2** (a)  $N_2$  adsorption-desorption isotherms of  $Na_2Ti_3O_7$ @CNT, (b) pore size distribution data through the BJH method.



**Fig. S3** Charge-discharge voltage profiles and (b) cycling performance at current density of 85 mA g<sup>-1</sup> of CNTs.



**Fig. S4** Nyquist plots of Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>@CNT and pristine Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> electrodes.



**Fig. S5** (a) log *i* vs. log v and (b)  $iv^{-1/2}$  vs.  $v^{1/2}$  at different Na-insertion potentials around the reduction peak.



Fig. S6 SEM and HRTEM images of PSC.



**Fig. S7.** (a) Nitrogen adsorption-desorption isotherm and (b) Pore size distribution data through the BJH method of PSC.

Figure S7a indicates the Nitrogen adsorption-desorption isotherm of PSC, while Figure S7b indicates its pore size distribution (obtained by BJH method). The typical I/IV-type isotherms could be observed for the PSC specimen, which possesses sizable porosity and specific surface areas. Specifically, the BET surface area is 1900.5 m<sup>2</sup> g<sup>-1</sup> and total pore volume is 0.86 cm<sup>3</sup> g<sup>-1</sup> with an average pore diameter of 1.94 nm.



Fig. S8 Electrochemical performance of the Na/PSC half-cell within a voltage window of 1.5 - 4.2 V.
(a) Galvanostatic charge-discharge curves at various densities. (b) Plots of specific capacity versus cycle number at 0.5 A g<sup>-1</sup> for 2000 cycles.

| Reference | Type of material            | Specific capacity (mAh g <sup>-1</sup> )           | Cycle performance                  |
|-----------|-----------------------------|----------------------------------------------------|------------------------------------|
| This work | NTO@CNT                     | 100 mAh g <sup>-1</sup> at 3.4 A g <sup>-1</sup>   | 100 mAh g <sup>-1</sup> after 1000 |
|           |                             |                                                    | cycles at 1.7 A g <sup>-1</sup>    |
| 1         | Single crystalline NTO rods | 85 mAh g <sup>-1</sup> at 0.085 A g <sup>-1</sup>  | 55 mAh g <sup>-1</sup> after 20    |
|           |                             |                                                    | cycles at 0.085 A g <sup>-1</sup>  |
| 2         | NTO nanotubes               |                                                    | 125.8 mAh g <sup>-1</sup> after 60 |
|           |                             |                                                    | cycles at 0.017 A g <sup>-1</sup>  |
| 3         | NTO nanotubes               | 60 mAh g <sup>-1</sup> at 0.5 A g <sup>-1</sup>    | 105 mAh g <sup>-1</sup> after 50   |
|           |                             |                                                    | cycles at 0.017 A g <sup>-1</sup>  |
| 4         | NTO/C composites            | 79.5 mAh g <sup>-1</sup> at 0.89 A g <sup>-1</sup> | 72.8 mAh g <sup>-1</sup> after 100 |
|           |                             |                                                    | cycles at 0.89 A g <sup>-1</sup>   |
| 5         | NTO nanotubes-assembled     | 100 mAh g <sup>-1</sup> at 3.0 A g <sup>-1</sup>   | 107 mAh g <sup>-1</sup> after 500  |
|           | 3D spider-web architecture  |                                                    | cycles at 0.5 A g <sup>-1</sup>    |

 Table S1. Electrochemical performance of different NTO materials.

- 1 W. Wang, C. Yu, Y. Liu, J. Hou, H. Zhu and S. Jiao, RSC Advances, 2013, 3, 1041.
- 2 L. Zhao, L. Qi and H. Wang, J. Power Sources, 2013, 242, 597.
- 3 J. Yin, L. Qi and H. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 2762.
- 4 Z. C. Yan, L. Li, H. B. Shu, X. K. Yang, H. Wang, J. L. Tan, Q. Zhou, Z. F. Huang and X. Y. Wang, J. Power Sources, 2015, 274, 8.
- 5 Y. Zhang, L. Guo and S. Yang, Chem. Commun., 2014, 50, 14029.