Electronic Supplementary Information for

Physical Vapor Deposition of Amorphous MoS₂ Nanosheet Arrays on Carbon Cloth towards Highly Reproducible Large-Area Electrocatalysts for Hydrogen Evolution Reaction

Xing Zhang, Yun Zhang, Bin-Bin Yu, Xing-Liang Yin, Wen-Jie Jiang, Yan Jiang, Jin-Song

Hu*, Li-Jun Wan*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), 2 North 1st Street, Zhongguancun, Beijing 100190, P.R. China. Fax: (+86) 10-82613929

E-mail: hujs@iccas.ac.cn, wanlijun@iccas.ac.cn

Experimental Section

Synthesis of a-MoS₂ NA/CC

Carbon cloth (CC, Wuhan Instrument, Wuhan) was carefully cleaned with concentrated HNO₃ to remove impurities on surface, then rinsed by deionized water and ethanol before use. The deposition of a-MoS₂ was carried out on a magnetron sputtering system (PVD 75, Kurt J. Lesker, USA) using molybdenum sulfide (99.99%, Purui, Beijing) as the target. The deposition time was kept at 1000 s. The sputtering power was adjusted from 70 W to 150 W to control the morphology of the deposited a-MoS₂. In order to keep the same loadings of MoS₂ for all the samples deposited at different power, we first measured the thickness of the MoS₂ thin film deposited on Si substrate in parallel with the samples to calculate the sputtering rate at different power. Then, we calibrated the sputtering time to obtain MoS₂ nanostructures on carbon cloth with the same loading of MoS₂ on carbon cloth by weighing the sample before and after the sputtering process.

Electrochemical measurements

All electrochemical measurements were performed on a 760E bipotentiostat (CHI instruments) in a typical three electrode setup. In a typical measurement, a-MoS₂ NA/CC (0.5×0.5 cm) with a MoS₂ loading of ~0.41 mg cm⁻²

was used as a working electrode, a graphite rod as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. The electrolyte solution is 0.5 M H₂SO₄. Another two a-MoS₂ nanostructured thin films obtained at different sputtering power with same loading (~0.41 mg cm⁻²) and commercial Pt/C catalyst (20 wt.% Pt, Johnson Matthey, 0.35 mg cm⁻².) were also measured for comparison. In all measurements, the SCE reference electrode was calibrated with respect to reversible hydrogen electrode (RHE). LSV measurements were conducted at a scan rate of 2 mV/s. All the potentials reported in our work were versus RHE.

Characterizations

Morphology analysis was conducted using a Hitachi S-4800 field emission scanning electron microscope operated at 10 kV. Elemental mapping and electron energy dispersive spectroscopy (EDS) were performed with a EDS detector equipped on the Hitachi S-4800 SEM. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images were recorded on a JEOL-2100F microscope operating at 200 kV. X-ray diffraction (XRD) experiments was carried out on a PANalytical high resolution X-ray diffraction system (model EMPYREAN) with a Cu K α radiation ($\lambda = 0.15406$ nm). X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo Scientific ESCALab250Xi using 200W monochromated Al K α radiation.

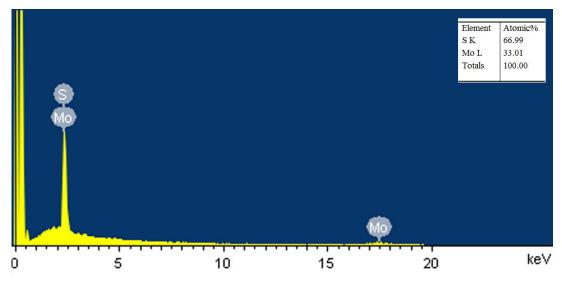


Fig. S1. A typical EDS spectrum of a-MoS₂ NA/CC.

Figure S2

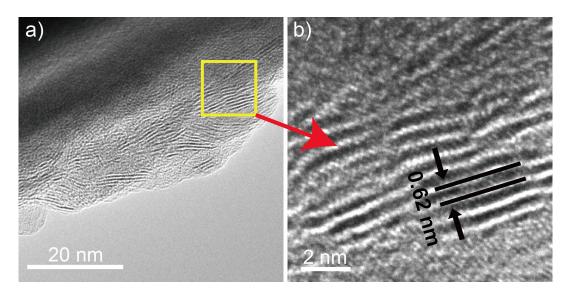


Fig. S2. a) Low, b) high magnification TEM images of a-MoS $_2$ NA/CC.

Figure S3

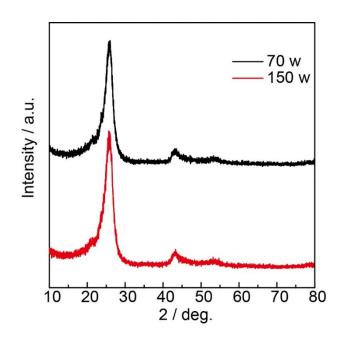


Fig. S3. XRD patterns of the as-prepared a-MoS2 nanostructured thin films at different sputtering powers.

Figure S4

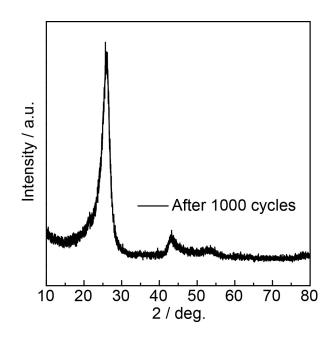


Fig. S4. XRD pattern of a-MoS₂ NA/CC after aging test of 1000 CV scans.

Figure S5

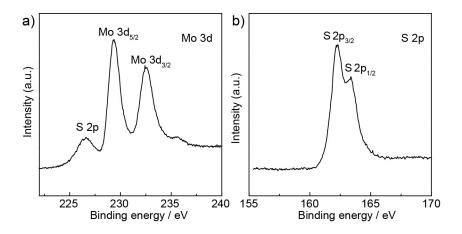


Fig. S5. XPS spectra of a-MoS₂ NA/CC after 1000 CV scans: a) high resolution Mo 3d spectrum; b) high

resolution S 2p spectrum.