Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary information:

		Temperature, °C							
Composition		900	950	1000	1050	1100	1150	1200	1250
Li ₂ O×	0.5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	3.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Na ₂ O×	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	3.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
K ₂ O×	1.0B ₂ O ₃			\checkmark		\checkmark		\checkmark	\checkmark
	2.0B ₂ O ₃			\checkmark		\checkmark		\checkmark	\checkmark
	3.0B ₂ O ₃			\checkmark		\checkmark		\checkmark	\checkmark

Table S1. Studied alkali borate compositions and synthesis temperatures employed.

Table S2. Studied alkaline earth borate compositions and synthesis temperatures employed.

		Temperature, °C					
Composition		1000	1100	1200	1250		
	0,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	1,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
MgO×	2.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	2,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	3,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	5.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	1,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
MgO×*)	2,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	3,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
CaO×	0,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		
	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark		

	1,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
	0,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
SrO×	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
	1,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
	0,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
BaO×	1.0B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark
	1,5B ₂ O ₃	\checkmark	\checkmark	\checkmark	\checkmark

*) Heating in argon.

Fig. S1 X-ray diffraction pattern of the reaction products of lithium tetraborate with ammonia at 1200 °C. All reflections except the one marked with an asterisk were assigned to a hexagonal phase with the lattice constants a= 2.50 Å and c= 6.69 Å.

Fig. S2. SEM image of BNGPs grown on BNNTs surface from lithium tetraborate at 1200 °C.

Fig. S3 SEM image of MgO·1.5B₂O₃ reacted with ammonia at 1200 °C.

Fig. S4 SEM images of samples heated in argon and synthesized in ammonia at 1200 °C from $MgO\cdot 1.5B_2O_3$ (a) and $MgO\cdot 3.5B_2O_3$ (b).