1 2	Supplementary Information For Journal of Materials Chemistry A		
3 4			
5	Perovskite-TiO2@BiVO4 Photoelectrochemical Cells for Unbiased Solar Water		
6	Splitting		
7	Xiaofan Zhang ^a , Bingyan Zhang ^a , Kun Cao ^a , Jérémie Brillet ^b , Jianyou Chen ^a ,		
8	Mingkui Wang ^a and Yan Shen ^a *		
9	^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science		
10	and Technology, Luoyu Road 1037, Wuhan, 430074, P. R. China. *Corresponding		
11	author. E-mail: ciac_sheny@mail.hust.edu.cn		
12	^b Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road,		
13	Shanghai 200050 P. R. China		
14			
15	The power conversion efficiency (η) of the perovskite solar cell is calculated		
16	according to the following formula:		
17	$\eta(\%) = P_{out}/P_{in} = (FF \times J_{sc} \times V_{oc})/P_{in} $ (S1)		
18	where P_{in} (100 mW cm ⁻² herein) and P_{out} are the incident light intensity and output		
19	power of the solar cell device, FF is the fill factor, and J_{sc} and V_{oc} stand for the		
20	short-circuit current density and open-circuit voltage of the solar cell, respectively.		
21			
22	The overall solar-to-hydrogen (STH) efficiency of the PV/PEC cell is calculated with		
23	the following equation:		
24	$STH = \frac{1.23 \times J_{\text{PEC cell}} \times \eta_F}{P_{in}} \times 100\% $ (S2)		
24	where Image with the maximum photocurrent given by the photoelectrochemical call in-		
25	is the Faradic efficiency for the H ₂ evolution that can be calculated with the following		
20	is the Faradic efficiency for the H_2 evolution that can be calculated with the following		
21	$2 \times n \times 96485$		
28	$\eta_F = \frac{2 \times n_{H_2} \times 30463}{Q_c} \times 100\% $ (S3)		

Fig. S1 The SEM images of BiVO₄ (a), and the cross-section images of TiO₂ NRs (b)
and TiO₂@BiVO₄ heterojunction film (c). (d) TEM image of TiO₂ NRs, the inset is
the selected area electron diffraction (SAED) pattern.

5

6 The elemental compositions were collected by X-ray photoelectron spectroscopy 7 (XPS, AXIS-ULTRA DLD-600 W, Shimdzu) under ultrahigh vacuum ($<10^{-8}$ Torr) 8 and using a monochromatic Al K α X-ray source operating at 150 W. The survey and 9 high-resolution spectra were collected at fixed analyzer pass energies of 160 and 20 10 eV, respectively. The binding energy shifts were corrected using the C1s level at 11 284.8 eV as an internal standard, to compensate for the surface-charging effect during 12 data analysis.

13 14

15 **Fig. S2** XPS spectra of the $TiO_2@BiVO_4$ composite film.

Fig. S3 exhibits both the characteristic Raman modes of the rutile TiO_2 and the monoclinic BiVO₄. The mode at 146 cm⁻¹ (B_{1g}), 443 cm⁻¹ (E_g), 609 cm⁻¹ (A_{1g}). and 243 cm⁻¹ (E_g) is the characteristic peak of the rutile TiO₂. The strongest peak at 826 cm⁻¹ and the shoulder peak at 717 cm⁻¹ are from the anti-symmetric and symmetric stretching modes of the VO₄ tetrahedral, respectively. The peaks at 325 cm⁻¹ and 366 cm⁻¹ belong to the bending modes of the VO₄ tetrahedral. The remaining Raman peaks at 129 cm⁻¹ and 211 cm⁻¹ are attributed to the vibration of the crystal lattice.

8

9 Fig. S3 Raman spectrum for TiO₂ NRs, BiVO₄ NPs and TiO₂@BiVO₄ composite
10 films.

11

The phase purity and crystal structure of the obtained samples were examined by 12 X-ray diffraction (XRD). The XRD patterns for the TiO₂ NRs and BiVO₄ NPs are 13 displayed in Fig. S4a, corresponding to a pure tetragonal rutile TiO₂ and monoclinic 14 BiVO₄ phase, respectively. After deposition of the BiVO₄, only rutile TiO₂ and 15 monoclinic BiVO₄ phase are detected in the XRD pattern of TiO₂@BiVO₄ composite 16 film, suggesting that the phase and composition of the TiO₂ is unchanged after 17 deposition the BiVO₄ NPs. Fig. S4b compares the UV-visible absorption of the 18 samples. The optical band gap can be estimated by dropping a line from the maximum 19 slope of the Tauc plot ($\sqrt{\alpha h \nu}$ vs $h \nu$) to the axis (Fig. S4c).³ Therefore, the band tail 20 was estimated to be 2.4 and 3.0 eV for the BiVO₄ NPs and TiO₂ NRs, respectively. 21 Compared to the TiO₂ NRs, the TiO₂@BiVO₄ photoanode exhibits an increase in 22 23 light absorption intensity in the range from 300 to 500 nm. The broad absorption band from 400 to 500 nm could be attributed to the light absorption of BiVO₄, which
 remarkably enhances the TiO₂ light absorption ability.

3

Fig. S4 (a) XRD patterns of the TiO₂ NRs, BiVO₄ NPs and TiO₂@BiVO₄ composite
film. Asterisks (*) is corresponding to diffraction peaks arising from the FTO
substrate. (b) UV-vis absorption spectrum for all prepared samples. (c) Tauc plots of
TiO₂ NRs and BiVO₄ NPs for the band gap calculation.

- 8
- 9 **Table S1.** Comparison of various TiO₂-BiVO₄ photoanodes for PEC water splitting.

Electrolyte solution	Photocurrent density at 1.23 V vs.	Reference
	RHE (mA cm^{-2})	
1 M NaOH	0.2 (visible light)	1
0.1 M K ₃ PO ₄ (pH 8.0)	0.15 (full solar spectrum)	2
0.1 M PBS (pH 7.0)	1.3 (full solar spectrum)	This
	0.81 (λ>420 nm) ^a	work

^a This photocurrent density is calculated by integrating the measured IPCE (Figure 3b)

11 over standard AM 1.5 G spectrum within the region λ >420 nm.

Fig. S5 PEC water splitting of the TiO₂@BiVO₄ photoanode at 1.23 V vs. RHE (the
theory potential of water decomposition) in three-electrode system under irradiation.
Black line corresponds to the integration over time of the net photocurrent divided by
Blue and red circles correspond to the evolved O₂ and H₂ gas measured by gas
chromatography during the experiment, respectively.

7

8 The absorbed photo-to-current efficiency (APCE) was obtained by dividing the 9 IPCE by light harvesting efficiency (LHE) at each wavelength using the formula with 10 APCE=IPCE/LHE, and the LHE plots of the samples are shown in Fig. 4a. In order to 11 explain the fact that more photogenerated holes with my structure can be collected 12 than the mesoporous structure, the normalized APCE was obtained (Fig. S6).

13

Fig. S6 APCE plots of the TiO_2 NRs, $BiVO_4$ and $TiO_2@BiVO_4$ photoanodes.

Fig. S7 Mott-Schottky plots of the TiO₂ NRs (black line) and BiVO₄ NPs (blue line).

The applied bias photon-to-current efficiency (ABPE) was calculated from the J-V
curves obtained from a two-electrode system where V_{bias} is the applied bias between
WE and CE assuming 100% Faradaic efficiency using the following equation,⁴

7 ABPE=
$$\frac{J_{p} \times (1.23 - |V_{bias}|)}{P_{in}} \times 100\%$$
 (S4)

8 where J_p is the photocurrent density (mA cm⁻²), V_{bias} is the applied bias between the 9 working electrode and counter electrode (V), and P_{in} is the inciden illumination power 10 density (AM 1.5G, 100 mW/cm²).

11

1

12 Fig. S8 ABPE plots of all photoanodes obtained using a two-electrode system.

Fig. S9 The Faradaic efficiency and quantity of detected hydrogen derived from the
TiO₂ NRs+PVSC device under irradiation. Black line corresponds to the integration of
the net photocurrent divided by 2. Black circle corresponds to the H₂ gas measured by
gas chromatography during the experiment.

6

7 Electrochemical impedance spectroscopy measurement was further performed at open circuit potential under AM 1.5G illumination. Fig. S8 presents the typical 8 Nyquist plots for various photoanodes. An equivalent circuit model (the inset of Fig. 9 10 S8) was employed to analyze the EIS data, in which R_s is the resistance of the electrolyte, Cp is the capacitance phase element, and Rct represents the charge-transfer 11 resistance at the photoanode/electrolyte interface where the water oxidation reaction 12 occurred.⁵ Normally, a decrease of the charge transfer resistance indicates a fast 13 14 interfacial charge transfer process. Here, the TiO₂@BiVO₄ heterojunction photoanode exhibits the smallest charge transfer resistance among the three samples, which 15 indicates a more effective separation of photogenerated carriers and faster interfacial 16 charge transfer occurring in the TiO₂@BiVO₄ photoanode. This result is consistent 17 18 with the PEC measurements that the TiO₂@BiVO₄ sample shows the best PEC water oxidation performance. 19

Fig. S10 Nyquist EIS plots for all photoanodes at open circuit potential recorded under light illumination. The inset is the equivalent circuit model used for fitting the experimental data (The solid lines are the fitting results, the circles are the experimental results).

- 6
- 7

8 **Reference**

9 1. M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Adv. Energy Mater. 2014, 4,
10 1300995.

11 2. S. Kimura, S. Moniz, A. Handoko, J. Tang, J. Mater. Chem. A, 2014, 2,
12 3948-3953.

3. X. Zhang, B. Zhang, D. Huang, H. Yuan, M. Wang and Y. Shen, Carbon, 2014, 80,
591-598.

- 15 4. T. Kim, K. Choi, *Science* 2014, **343**, 990-994.
- 5. M. Wang, P. Chen, R. Baker, S. Zakeeruddin and M. Grätzel, *ChemPhysChem*,
 2009, 10, 290-299.