A three layer design with mesoporous silica encapsulated by carbon core and shell for high energy Lithium ion battery anode

Xi Cao^{a,b}, Xiuyun Chuan^{*a}, Robert Masse^b, Dubin Huang^a, Shuang Li^b, Guozhong Cao^{*b}

Supporting Information

1. Theoretical capacity of SiO₂

According to previous study, it can be summed that three types of reaction exist between silica and Li ions. According to these reaction equations, the theoretical capacity of SiO₂ can be calculated based on the number of transfer electrons and shown in Table. S1^{1,2}. The theoretical capacity of SiO₂ increases with the reduction of the amount of silica. Namely, the reaction generated Li_2O and Si shows the largest reversible capacity of 1961 mAhg⁻¹.

The calculation should be: Weight of 1 Mole of SiO₂: 60g Coulombs in 1 Mole (one charge per Li): 96 485*4 .4 Coulombs in 1 mAh: 3.6 mAh per mole of charge: 96 485*4.4 /3.6= 117925 mAh per gram of SiO₂: 117925/60.08 = 1961 mAhq⁻¹

Table. S1: The theoretical capacities and the molar ratios of SiO₂ and Li ions in different mechanisms³

Mechanism	Reaction equations	The molar ratio of SiO ₂ and Li ions	Theoretical initial capacity of SiO ₂	Theoretical reversible capacity of SiO ₂
1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5:4	749 mAhg ⁻¹	749 mAhg ⁻¹
	Si + 22Li⁺ + 22e ↔ Li ₂₂ Si ₅			
2	2SiO₂+4Li⁺+4e→Li₄SiO₄+ Si	1:2	1872 mAhg ⁻¹	980 mAhg ⁻¹
	5Si+22Li⁺+ 22e ↔ Li ₂₂ Si ₅			
3	SiO ₂ +4Li⁺+4e→2Li ₂ O + Si			
	5Si+22Li⁺+22e ↔ Li ₂₂ Si ₅	1:4	3744 mAhg ⁻¹	1961 mAhg ⁻¹

However, it is reported that the reversible reaction of $Li_2Si_2O_5$ (Mechanism 1) and the irreversible reaction of both Li_2O (Mechanism 3) and Li_4SiO_4 (Mechanism 2) are coexistence in the electrochemical reaction between silica and Li ions^{3,4}.

- 1. Q. Sun, B. Zhang and Z. W. Fu, *Appl. Surf. Sci.*, 2008, **254**, 3774-3779.
- 2. B. K. Guo, J. Shu, Z. X. Wang, H. Yang, L. H. Shi, Y. N. Liu and L. Q. Chen, *Electrochem Commun*, 2008, **10**, 1876-1878.
- 3. N. Yan, F. Wang, H. Zhong, Y. Li, Y. Wang, L. Hu and Q. W. Chen, Scientific Reports, 2013, 3, 6.
- 4. W. S. Chang, C. M. Park, J. H. Kim, Y. U. Kim, G. Jeong and H. J. Sohn, *Energy & Environmental Science*, 2012, 5, 6895-6899.

Fig. S1 The general view of mcms (a), C-mcms (b), ms(c), and C-ms (d)

Fig. S2 TEM images of the mcms (a) and C-ms (b)

