Electronic Supplementary Information for:

Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells

Huitao Bai,^{§ab} Yao Wu,^{§a} Yifan Wang,^{bd} Yang Wu,^c Rong Li,^a Pei Cheng,^{bd} Mingyu Zhang,^a Jiayu Wang,^a Wei Ma^c and Xiaowei Zhan^{*a}

^aDepartment of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871,P. R. China. E-mail: xwzhan@pku.edu.cn ^bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China ^c State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China

^dUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Fig. S1 Chemical structure of PBDTTT-C-T.

Fig. S2 TGA curves of IDT-2BM and IDTT-2BM.

Fig. S3 DSC curves of (a) IDT-2BM and (b) IDTT-2BM.

Fig. S4 XRD patterns of pristine IDT-2BM and IDTT-2BM films on SiO2/Si substrate.

Fig. S5 Absorption spectra of IDT-2BM and IDTT-2BM in chloroform solution.

Fig. S6 J-V characteristics for electron-only devices based on pristine IDT-2BM and IDTT-

2BM films.

Fig. S7 Theoretically calculated molecular orbitals of IDT-2BM and IDTT-2BM. The alkyl chains are replaced with methyl groups for computational simplicity.

Fig. S8 *J-V* characteristics for (a) electron-only and (b) hole-only devices based on PBDTTT-C-T: IDT-2BM or IDTT-2BM (1.5: 1, w/w) blend films prepared with different conditions.

Fig. S9 R-SoXS profiles of PBDTTT-C-T: IDTT-2BM processed with *o*-DCB/CF/DIO with the energy of 270 and 283 eV. Before the absorption edge 270 eV, the mass-contrast dominates the scattering. At 283 eV, the contrast between PBDTTT-C-T and IDTT-2BM is enhanced and the phase separation is detected with peak near q=0.1-0.2 nm⁻¹.

Fig. S10 The fitting of the R-SoXS (PBDTTT-C-T: IDT-2BM processed with CN) with lognormal distribution.

Table S1. Photovoltaic parameters of the OSCs (processed with *o*-DCB solution) based on PBDTTT-C-T: acceptor with different weight ratios under the illumination of AM1.5G, 100 mW cm⁻².

	D/A ratio	$V_{\rm OC}{}^{\rm a}$	$J_{ m SC}{}^{ m a}$	FF ^a	PCE ^a
acceptor	(w/w)	(V)	$(mA cm^{-2})$	(%)	(%)
IDT-2BM	1.15	0.765±0.003	8.80±0.15	45.5±0.4	3.07 ± 0.08
IDTT-2BM	1. 1.5	(0.769)	(8.97)	(46.0)	(3.17)
	1:1	0.764 ± 0.003	9.18±0.17	45.7±0.4	3.29 ± 0.09
		(0.768)	(9.38)	(47.2)	(3.40)
	1.5: 1	0.762 ± 0.003	10.63 ± 0.18	45.2 ± 0.4	3.67 ± 0.12
		(0.766)	(10.85)	(45.6)	(3.79)
	2: 1	0.766 ± 0.004	7.86±0.18	31.4±0.2	1.89 ± 0.07
		(0.771)	(8.08)	(31.6)	(1.97)
	1.5: 1	0.771 ± 0.002	6.92±0.09	38.1 ± 0.2	2.01 ± 0.06
		(0.773)	(7.03)	(38.5)	(2.09)
	1:1	0.738 ± 0.006	4.77±0.06	33.9±0.2	1.20 ± 0.03
		(0.747)	(4.83)	(34.1)	(1.23)
	1: 1.5	0.751 ± 0.005	3.77±0.04	34.5 ± 0.2	0.95 ± 0.04
		(0.758)	(3.82)	(34.5)	(1.00)

^{*a*} The performance of the best device is given in parentheses and the average PCE was obtained from over 20 devices.

acceptor	solution	$\mu_h(cm^2~V^{-1}~s^{-1})^{c}$	$\mu_e (cm^2 \; V^{-1} \; s^{-1})^{ c}$	$\mu_h\!/\mu_e$
IDT-2BM	o-DCB	$(8.3\pm0.4) \times 10^{-5}$	$(5.0\pm0.2) \times 10^{-7}$	166
	o-DCB/CN ^a	$(2.5\pm0.1) \times 10^{-4}$	$(1.0\pm0.1) \times 10^{-5}$	25
IDTT-2BM	o-DCB	$(1.7\pm0.1) \times 10^{-3}$	$(2.8\pm0.1) \times 10^{-6}$	607
1D11-2DW	o-DCB/CF/DIO b	$(4.1\pm0.2) \times 10^{-4}$	$(1.3\pm0.1)\times10^{-5}$	32
^{<i>a</i>} o -DCB/CN = 1	00: 6 (v/v); ^b o-DCB	/CF/DIO = 60: 40: 3	(v/v). ^c These mobilitie	s were
obtained from over	er 10 devices.			

Table S2. SCLC data of hole-only and electron-only devices based on PBDTTT-C-T: acceptor (1.5: 1, w/w) blended films.