Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

N-doped carbon encapsulated ultrathin MoO₃ nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion

batteries

Jiyicheng Qiu^a, Zhanxu Yang^{a*}, Yue Li^b

^a College of Chemistry, Chemical Engineering and Environment
Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R.
China.

^b School of Foreign Languages, Liaoning Shihua University, Fushun,

Liaoning 113001, P. R. China

*Corresponding author: zhanxuy@126.com(Z. Yang).

Fig. S1 Typical SEM of (a) α -MoO₃ and (b) MoO₃/dodecylamine. The SEM of (c) M-700, (d) M-200, (e) M-300, (f) M-400 and (g) M-500. (h) The HRTEM image of M-600.

Fig. S2 The local area magnification of elemental mapping from M-600 sample.

Fig. S3 (a) XRD pattern of precursor MoO₃/dodecylamine. (b) In-situ IR spectrum of composites at various annealing temperature (100~350 °C). (c) TG-MS combination analysis for the calcination of precursor MoO₃/dodecylamine up to 700 °C in argon gas.

Fig. S4 (a) XPS spectra of M-500 for Mo3*d* and N1*s*. (b) XPS spectra of M-700 for Mo3*d* and N1*s*.

Fig. S5 (a) Raman pattern of different composites after heating treatment at various temperature with a excitation wavelength of 532 nm. The fitted D and G peaks of M-400 (b), M-500 (c), M-600 (d) and M-700 (e).

Samples	D peak position	G peak position	FWHM of G	I _D /I _G
	(cm ⁻¹)	(cm ⁻¹)	peak (cm ⁻¹)	
M-400	1364	1597	77.1	0.69
M-500	1362	1597	78.4	0.81
M-600	1359	1591	80.1	1.01
M-700	1345	1584	101.8	1.39

Table S1 Characteristics of the fitted D and G band for various composites

Fig. S6 SEM images of (a) MoO_3 electrode materials and (b) M-600 electrode materials after 60 cycles of charge-discharge at 1C.

		Specific capacity	0 1 1	Ref	
Materials	Current rate	$(mAh g^{-1})$	Cycle number		
MoO ₂ /graphene	0.2 C	1100	50	1	
	0.1 C	1127	50	2	
MoO ₃ /MnO ₂	6 C	286	50	2	
MoO ₃ nanosphere	0.1 C	1050	30	3	
MoO ₃ film	1 C	650	50	4	
MoO ₂ /C nanowires	1 A g ⁻¹	327	20	5	
MoO ₃ microsphere	1 C	780	100	6	
MoO ₃ /C microballs	2 A g ⁻¹	733	300	7	
MoO ₃ /C nanofiber	0.2 A g ⁻¹	500	100	8	
MoO _{3-x} nanowire arrays	0.05 A g ⁻¹	630	20	9	
Core-shell MoO ₂	1 C	624	50	10	
Mesoporous MoO ₂	0.05 C	750	30	11	
MoO ₂ /C nanosphere	3 C	410	60	11	
MoO ₂ /C nanobelts	0.1 A g ⁻¹	617	30	12	
MoO ₂ /MWCNT	0.1 A g ⁻¹	1143	200	13	
MoO ₃ @C	1 A g ⁻¹	502	100	14	
MoO ₃ @C	0.1 C	1064	50	15	
MoO ₃ @C	0.1 A g ⁻¹	500	100	16	
MoO ₃ @C	0.2 C	700	120	17	
MoO ₃ /NC	6 C (6.2 A g ⁻¹)	605	150	Our	
nanosheets	0.3 C (0.46 A g ⁻¹)	1250	60	work	

Table S2 Comparison for electrochemical properties of various MoO_x materials

Fig. S7 Nyquist plots of M-600 and MoO_3 over the frequency range from 100 kHz to 0.01 Hz at the discharged potential of 2.5 V after the 15th cycle.

References

- K. Palanisamy, Y. Kim, H. Kim, J. M. Kim, W. Yoon, Self-assembled porous MoO₂/graphene microspheres towards high performance anodes for lithium ion batteries, J.Power Sources, 2015, 275, 351.
- 2 Q. Wang, D. Zhang, Q. Wang, J. Sun, L. Xing, X. Xue, High electrochemical performances of α-MoO₃@MnO₂ core-shell nanorods as lithium-ion battery anodes, Electrochim.Acta, 2014, **146**, 411.
- 3 L. A. Riley, S. Lee, L. Gedvilias, A. C. Dillon, Optimization of MoO₃ nanoparticles as negative-electrode material in high-energy lithium ion batteries, J. Power Sources, 2010, **195**, 588.
- X. Yu, L. Wang, J. Liu, X. Sun, Porous MoO₃ Film as a High-performance Anode
 Material for Lithium-Ion Batteries, ChemElectroChem, 2014, 1, 1476.
- 5 Q. Gao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu, Y. Tang, Synthesis, characterization and lithium-storage performance of MoO₂/carbon hybrid nanowires, J. Mater. Chem., 2010, 20, 2807.
- K. Zhao, M. Cao, C. Hu, Thermal oxidation synthesis hollow MoO₃ microspheres and their applications in lithium storage and gas-sensing, Mater. Res. Bull., 2013, 48, 2289.
- 7 Y. N. Ko, S. B. Park, K. Y. Jung, Y. C. Kang, One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide-Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries, Nano Lett., 2013, 13, 5462.
- 8 C. Feng, H. Gao, C. Zhang, Z. Guo, H. Liu, Synthesis and electrochemical

properties of MoO₃/C nanocomposite, Electrochim. Acta, 2013, 93, 101.

- 9 P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera, M. K. Sunkara, MoO_{3-x} Nanowire Arrays As Stable and High-Capacity Anodes for Lithium Ion Batteries, Nano Lett., 2012, **12**, 1784.
- 10 X. Zhao, M. Cao, B. Liu, Y. Tian, C. Hu, Interconnected core-shell MoO₂ microcapsules with nanorod-assembled shells as high-performance lithiumion battery anodes, J. Mater. Chem., 2012, 22, 13334.
- Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. Hu, K. R. Heier, L. Chen, R. Seshadri, G. D.
 Stucky, Ordered Mesoporous Metallic MoO₂ Materials with Highly Reversible
 Lithium Storage Capacity, Nano Lett., 2009, 9, 4215.
- 12 L. Yang, L. Liu, Y. Zhu, X. Wang, Y. Wu, Preparation of carbon coated MoO₂ nanobelts and their high performance as anode materials for lithium ion batteries, J. Mater. Chem., 2012, 22, 13148.
- 13 A. Bhaskar, M. Deepa, T. N. Rao, MoO₂/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode, ACS Appl. Mater. Interfaces, 2013, 5, 2555.
- 14 T. Tao, A. M. Glushenkou, C. Zhang, H. Zhang, D. Zhou, Z. Guo, H. K. Liu, Q. Chen, H. Hu, Y. Chen, MoO₃ nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries, J. Mater. Chem., 2011, 21, 9350.
- 15 M. F. Hassan, Z. P. Guo, Z. Chen, H. K. Liu, Carbon-coated MoO₃ nanobelts as anode materials for lithium-ion batteries, J. Power Sources, 2010, **195**, 2372.

- 16 Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang, P. Lv, Synthesis and electrochemical properties of MoO₃/C composites as anode material for lithiumion batteries, J. Power Sources, 2013, 226, 107.
- 17 X. Li, J. Xu, L. Mei, Z. Zhang, C. Cui, H. Liu, J. Ma, S. Dou, Electrospinning of crystalline MoO₃@C nanofibers for high-rate lithium storage, J. Mater. Chem. A, 2015, 3, 3257.