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Permeation Modeling. Koros et al. considered two distinct molecular environments (Henry’s law and 

Langmuir) in which penetrants move with different inherent mobilities.1-3 The so-called “partial 

immobilization” (or dual-mode) model accounts for the fact by expressing Fick’s law as:

                                                                                                                     (S1)
𝑁 =‒ 𝐷𝐷

∂𝐶𝐷

∂𝑥
‒ 𝐷𝐻

∂𝐶𝐻

∂𝑥

where N is the total diffusive flux, and  and  are the local diffusion coefficients in the Henry’s law and 𝐷𝐷 𝐷𝐻

Langmuir environments, respectively. This model predicts the permeability of a pure gas measured with an 

upstream fugacity f2 and negligible downstream fugacity f1 as follows:

                                                                                                               (S2)
𝑃𝑖 = 𝑘𝐷𝑖

∙ 𝐷𝐷𝑖
(1 +

𝐹𝑖 ∙ 𝐾𝑖

1 + 𝑏𝑖 ∙ 𝑓2𝑖
)

where

                                                                                                                                              (S3)
𝐾 =

𝑐 '
𝐻 ∙ 𝑏

𝑘𝐷
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                                                                                                                                               (S4)
𝐹 =

𝐷𝐻

𝐷𝐷

The dual-mode model can also be applied to ternary or even more complex mixtures using the following 

equation:

                                                                                                        (S5)

𝑃𝑖 = 𝑘𝐷𝑖
∙ 𝐷𝐷𝑖

(1 +
𝐹𝑖 ∙ 𝐾𝑖

1 +
𝑛

∑
𝑖 = 1

𝑏𝑖 ∙ 𝑓2𝑖

)

Hence,

                                                                                                           (S6)  
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In the dual-mode model, the derivations for permeability using Fick’s law were under the assumption that 

diffusive flux is the only contributor to overall flux through the membrane, and “frame of reference” 

complications could be neglected.4 This is reasonable when the sorbed concentrations are low and the flux 

depends only on a Fickian diffusion driven process. However, some examples of non-negligible bulk flux 

contributions have been observed. In mixed gas permeation, the flux of each component can be quite 

dependent on the concentrations and fluxes of all the species in the mixture.4 Thus, the so-called “frame of 

reference” model has been developed.4, 5 In this model, the flux of each component through a membrane is 

actually the sum of the diffusive flux and the bulk (convective) flux according to the expressions in Eqs. 

S7-S11 for a ternary mixture of components A, B and C in a polymer, p.6

                                                                                                                   (S7)𝑛𝑖 = 𝑛𝑏𝑢𝑙𝑘
𝑖 + 𝑛𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒

𝑖



                                                                            (S8)
𝑛𝐴 = (𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶 + 𝑛𝑝) ∙ 𝜔𝐴 ‒ 𝜌 ∙ 𝐷𝐴,𝑚 ∙

𝑑𝜔𝐴

𝑑𝑥

                                                                           (S9)
𝑛𝐵 = (𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶 + 𝑛𝑝) ∙ 𝜔𝐵 ‒ 𝜌 ∙ 𝐷𝐵,𝑚 ∙

𝑑𝜔𝐵

𝑑𝑥

                                                                            (S10)
𝑛𝐶 = (𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶 + 𝑛𝑝) ∙ 𝜔𝐶 ‒ 𝜌 ∙ 𝐷𝐶,𝑚 ∙

𝑑𝜔𝐶

𝑑𝑥

                                                                            (S11)
𝑛𝑝 = (𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶 + 𝑛𝑝) ∙ 𝜔𝑝 ‒ 𝜌 ∙ 𝐷𝑝,𝑚 ∙

𝑑𝜔𝑝

𝑑𝑥

In the equations given above,  is the effective ternary diffusion coefficient for component i in the 𝐷𝑖,𝑚

polymer, ρ is the density of the polymer membrane, and  is the mass fraction of component i in the 𝜔𝑖

polymer. Because the membrane is stationary at steady-state, the flux term for the polymer ( ) is zero. 𝑛𝑝

Therefore, the mutually dependent flux for each component can be derived and consequently expressed by 

Eqs. S12-S15.

                                                                                                                            (S12)

𝑛𝐴 =
‒ 𝜌 ∙ 𝐷𝐷,𝐴 ∙

𝑑𝜔𝐴

𝑑𝑥

1 ‒ (1 +
1
𝑟

+
1
𝑝

) ∙ 𝜔𝐴

                                                                                                                            (S13)

𝑛𝐵 =
‒ 𝜌 ∙ 𝐷𝐷,𝐵 ∙

𝑑𝜔𝐵

𝑑𝑥

1 ‒ (1 + 𝑟 +
1
𝑞

) ∙ 𝜔𝐵

                                                                                                                            (S14)
𝑛𝐶 =

‒ 𝜌 ∙ 𝐷𝐷,𝐶 ∙
𝑑𝜔𝐶

𝑑𝑥
1 ‒ (1 + 𝑝 + 𝑞) ∙ 𝜔𝐶

                                                                                           (S15)
𝑟 =

𝑛𝐴

𝑛𝐵
, 𝑝 =

𝑛𝐴

𝑛𝐶
, 𝑞 =

𝑛𝐵

𝑛𝐶
, 𝑛𝐴 > 𝑛𝐵 > 𝑛𝐶



Component A is assumed to have highest mass flux among all the components, and component B is assumed 

to have a higher mass flux than component C. Hence, r, p, and q will always be greater than or equal to 1. 

Note that , so these are only two independent parameters; but it is more convenient to use the three 𝑞 = 𝑝/𝑟

separate coefficients in actual calculation. The following boundary conditions can be defined below for the 

mass fractions of each component in the upstream and downstream sections of the membrane. The 

downstream mass fractions of the penetrants approach zero when the downstream of the membrane is under 

vacuum.

𝑥 = 0, 𝜔𝐴 = 𝜔𝐴,𝑢𝑝, 𝜔𝐵 = 𝜔𝐵,𝑢𝑝, 𝜔𝐶 = 𝜔𝐶,𝑢𝑝

𝑥 = 𝑙, 𝜔𝐴 = 𝜔𝐴,𝑑𝑜𝑤𝑛 ≈ 0, 𝜔𝐵 = 𝜔𝐵,𝑑𝑜𝑤𝑛 ≈ 0, 𝜔𝐶 = 𝜔𝐶,𝑑𝑜𝑤𝑛 ≈ 0

By integrating Eqs. S12-S14 using the above boundary conditions, the following expressions can thus be 

obtained, accounting for the bulk flow or frame of reference effects:4

                                                            

𝑛𝐴 ∙ 𝑙 =

𝜌 ∙ 𝐷𝐷,𝐴 ∙ ln [1 ‒ (1 +
1
𝑟
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1
𝑝

) ∙ 𝜔𝐴,𝑑𝑜𝑤𝑛

1 ‒ (1 +
1
𝑟

+
1
𝑝

) ∙ 𝜔𝐴,𝑢𝑝
]

(1 +
1
𝑟

+
1
𝑝

)
≈

𝜌 ∙ 𝐷𝐷,𝐴 ∙ ln [ 1

1 ‒ (1 +
1
𝑟

+
1
𝑝

) ∙ 𝜔𝐴,𝑢𝑝
]

(1 +
1
𝑟

+
1
𝑝

)

(S16)

                                                            

𝑛𝐵 ∙ 𝑙 =

𝜌 ∙ 𝐷𝐷,𝐵 ∙ ln [1 ‒ (1 + 𝑟 +
1
𝑞

) ∙ 𝜔𝐵,𝑑𝑜𝑤𝑛

1 ‒ (1 + 𝑟 +
1
𝑞

) ∙ 𝜔𝐵,𝑢𝑝
]

(1 + 𝑟 +
1
𝑞

)
≈

𝜌 ∙ 𝐷𝐷,𝐵 ∙ ln [ 1

1 ‒ (1 + 𝑟 +
1
𝑞

) ∙ 𝜔𝐵,𝑢𝑝
]

(1 + 𝑟 +
1
𝑞

)

(S17)

                                                             
𝑛𝐶 ∙ 𝑙 =

𝜌 ∙ 𝐷𝐷,𝐶 ∙ ln [1 ‒ (1 + 𝑝 + 𝑞) ∙ 𝜔𝐶,𝑑𝑜𝑤𝑛

1 ‒ (1 + 𝑝 + 𝑞) ∙ 𝜔𝐶,𝑢𝑝
]

(1 + 𝑝 + 𝑞)
≈

𝜌 ∙ 𝐷𝐷,𝐶 ∙ ln [ 1
1 ‒ (1 + 𝑝 + 𝑞) ∙ 𝜔𝐶,𝑢𝑝

]
(1 + 𝑝 + 𝑞)

(S18)



In these equations, ωi is the mobile concentration of the pertinent component, which can be derived from 

the dual-mode sorption model to give the following expressions:4, 7

                                                                  
𝜔𝐴 = 𝜔𝑚𝑜𝑏𝑖𝑙𝑒

𝐴 =
𝑘𝐷,𝐴 ∙ 𝑓𝐴 ∙ 𝑀𝐴

22400 ∙ 𝜌
∙ (1 +

𝐹𝐴 ∙ 𝐾𝐴

1 + 𝑏𝐴 ∙ 𝑓𝐴 + 𝑏𝐵 ∙ 𝑓𝐵 + 𝑏𝐶 ∙ 𝑓𝐶
)

(S19)

                                                                  
𝜔𝐵 = 𝜔𝑚𝑜𝑏𝑖𝑙𝑒

𝐵 =
𝑘𝐷,𝐵 ∙ 𝑓𝐵 ∙ 𝑀𝐵

22400 ∙ 𝜌
∙ (1 +

𝐹𝐵 ∙ 𝐾𝐵

1 + 𝑏𝐴 ∙ 𝑓𝐴 + 𝑏𝐵 ∙ 𝑓𝐵 + 𝑏𝐶 ∙ 𝑓𝐶
)

(S20)

                                                                   
𝜔𝐶 = 𝜔𝑚𝑜𝑏𝑖𝑙𝑒

𝐶 =
𝑘𝐷,𝐶 ∙ 𝑓𝐶 ∙ 𝑀𝐶

22400 ∙ 𝜌
∙ (1 +

𝐹𝐶 ∙ 𝐾𝐶

1 + 𝑏𝐴 ∙ 𝑓𝐴 + 𝑏𝐵 ∙ 𝑓𝐵 + 𝑏𝐶 ∙ 𝑓𝐶
)

(S21)

where M is the molecular weight of each component. Thus, using Eqs. S16-S18 and the definition of r, p, 

and q, the flux for each component can be determined iteratively and can be used to predict the permeability, 

or permeance, of a glassy polymeric membrane with frame of reference effects taken into account using the 

equation below.

                                                                                                                                     (S22)
𝑃𝑖 =

22400 ∙ 𝑛𝑖 ∙ 𝑙

𝑀𝑖 ∙ ∆𝑓𝑖
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