Supporting information

Design and preparation of highly structure-controllable mesoporous carbons at the molecular level and application as electrode materials for supercapacitors

Kun Yan^{*a*}, Ling-Bin Kong^{*a,b,**}, Yan-Hua Dai^{*a*}, Ming Shi^{*a*}, Kui-Wen Shen^{*a*}, Bing Hu ^{*a*}, Yong-Chun Luo^{*b*}, and Long Kang^{*b*}

^a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China ^b School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China

*Corresponding author: Tel.: +86-931-2976579; Fax: +86-931-2976578. E-mail address: konglb@lut.cn

This supporting information includes:

Table S1, Table S2, Table S3, Figure S1, Figure S2, Figure S3, and Figure S4

Figure S1 GPC curve of PAN macroinitiator. The GPC results: $M_{n (GPC)} = 22 \ 153 \ g \ mol^{-1}$ and $PDI = M_w/M_n = 1.04$

Figure S2 The nitrogen adsorption-desorption isotherm at -196 °C of PAC via PAN macroinitiator pyrolysis; And the corresponding pore size distribution (inset) calculated from the adsorption branch of the isotherms using the density function method (DFT) model.

Table S1							
	$S_{\rm BET}^{a}$	S _{meso} ^b	$S_{\rm micr}^{\ c}$	P^{d}	$V_{\rm tota}^{\ e}$	$V_{\rm meso}^{f}$	$V_{\rm micr}^{\ g}$
Sample	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
PAC	461.3	63.8	397.5	1.48	0.243	0.054	0.189

^{*a*} The specific surface areas were calculated using the BET method. ^{*b*} Mesopore surface area. ^{*c*} Micropore surface area. ^{*d*} The pore diameters were calculated from the adsorption branch of the isotherms by using the DFT model. ^{*e*} Total pore volume measured at $P/P_0 = 0.99$. ^{*f*} Mesopore volume.

Figure S3 Electrochemical characterization of HSCMC-5 electrode in 2 mol L⁻¹ KOH aqueous electrolyte: (a) CV curves at different scan rates of 5 mV s⁻¹ to 100 mV s⁻¹ with a potential window from -1V to 0 V; (b) Galvanostatic charge-discharge curves at different current densities of 0.5 A g⁻¹ to 10 A g⁻¹; (c) Specific capacitance at different current density ranging from 0.5 A g⁻¹; (d) EIS curve measured in the frequency range from 10⁵ Hz to 10⁻² Hz at the open circuit voltage with an alternate current amplitude of 5 mV.

Table S2. Raman peak parameter of HSCMC-5. To obtain the intensity (area) of D and G bands, Loretzian fitting was conducted in origin pragram. The crystallite size of the nanographitic structure domain (L_a) was calculated by using $L_a = (2.4 \times 10^{-10}) \times \lambda^4 \times (I_D/I_G)^{-1}$, where λ is the laser wave length (nm).

Sample	Peak	Area%	I_D/I_G	L _a (nm)
USCMC 5	D	D 65.75		9.13953
HSCMC-5	G G		1.92	

Figure S4. An equilibrium circuit used to fit the Nyquist plot using the software Zsimpwin. (R_S:

Cell internal resistance, R_{CT} : Charge transfer resistance, C_{DL} : Double layer capacitance, W_0 : Warbug diffusion element, C_F : Faradic capacitance.)

				-	
Samples	$R_{S}(\Omega)$	$C_{DL}(\mu F)$	$R_{CT}(\Omega)$	$W_O(\Omega^{-1/2})$	$C_F(F)$
PAC	1.691	927.5	0.3944	1.1925	0.5056
HSCMC-1	1.205	881.4	0.1315	0.5619	0.4115
HSCMC-2	1.131	1 166	0.1515	0.4146	0.5422
HSCMC-3	1.124	1 815	0.1922	0.3754	0.5985
HSCMC-4	1.094	666.2	0.1218	0.5201	0.3213
HSCMC-5	1.080	333.2	0.0804	0.0757	0.5356
HSCMC-6	1.404	972.3	0.0921	0.7781	0.5352
HSCMC-7	1.413	559.8	0.2365	0.5591	0.4393

Table S3. Equivalent circuit parameters obtained by using fitting program.