Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

SI-1 SAED pattern of CuCo₂O₄ nanosheets.

SI-2 Typical SEM image (a) and the corresponding EDS mapping (b-g) of $CuCo_2O_4@MnO_2$ coreshell nanostructures grown on Ni foam.

SI-3 Cyclic voltammograms of the CuCo₂O₄ and CuCo₂O₄@MnO₂ arrays at scan rate of 40 mV s⁻

1.

SI-4 CV (a) and GCD (b) curves of $CuCo_2O_4@MnO_2$ NSCs electrode in 2 M KOH aqueous electrolyte.

Samples	<i>Cs</i> (F g ⁻¹)	Electrolyte	Test condition	References
MnO ₂ -modified diatomites	202.6	1 M Na ₂ SO ₄	0.25 A g ⁻¹	[1]
MnO ₂ /activated carbon	228	1 M Et4NBF4	10 mV s ⁻¹	[2]
MnO ₂ -graphene composites	234.2	0.5 M Na ₂ SO ₄	10 mV s ⁻¹	[3]
MnO ₂ -CNT-graphene-Ni foam	251	1 M Li ₂ SO ₄	1 A g ⁻¹	[4]
RGO/MnO ₂	260	1 M Na ₂ SO ₄	0.3 A g ⁻¹	[5]
graphene/MnO ₂ /polyaniline	276	1 M Na ₂ SO ₄	1 A g ⁻¹	[6]
MnO ₂ -graphene	315	1 M Na ₂ SO ₄	0.2 A g ⁻¹	[7]
MnO ₂ /graphene	324	1 M Na ₂ SO ₄	10 mV s ⁻¹	[8]
CuCo2O4@MnO2 nanowires	327	1 M Na ₂ SO ₄	1.25 A g ⁻¹	[9]
MnO ₂ /graphene	327.5	1 M Na ₂ SO ₄	10 mV s ⁻¹	[10]
CuCo ₂ O ₄ nanostructures	338	1 M KOH	1 A g ⁻¹	[11]
Ni(OH) ₂ /MnO ₂	355	1 M Na ₂ SO ₄	0.5 A g ⁻¹	[12]
MnO ₂ /Ni/graphite	428	0.5 M Na ₂ SO ₄	100 mV s ⁻¹	[13]
TiO ₂ @MnO ₂	454.2	1 M Na ₂ SO ₄	0.2 A g ⁻¹	[14]
MnO ₂ /porous carbon microspheres	459	6 M KOH	1 A g ⁻¹	[15]
Ni(OH) ₂ /MnO ₂	487.4	1 M KOH	0.5 A g ⁻¹	[12]
CuCo ₂ O ₄ @MnO ₂ nanosheets	416	1 M Na ₂ SO ₄	1 A g ⁻¹	This work

Table S1. Comparison of specific capacitances of the reported MnO_2 - and $CuCo_2O_4$ -based electrodes and the present work. All values are measured using the three-electrode system.

SI-5 GCD curves of the CuCo₂O₄@MnO₂ NSCs electrode (a) and AG electrode (b) in a three-electrode system in a 1M NaSO₄ electrolyte at a current density 1 A g^{-1} .

References

- [1] Y. X. Zhang, M. Huang, F. Li, X. L. Wang, Z. Q. Wen, J. Power Sources246 (2014) 449-456.
- [2] H.-Q. Wang, Z.-S. Li, Y.-G. Huang, Q.-Y. Li, X.-Y. Wang, J. Mater. Chem.20 (2010) 3883-3889.
- [3] T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, Y. Tong, Nanoscale5 (2013) 6790-6796.
- [4] G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, W. Huang, Nanoscale6 (2014) 1079-1085.
- [5] J. Zhang, X. S. Zhao, Carbon52 (2013) 1-9.
- [6] G. Wang, Q. Tang, H. Bao, X. Li, G. Wang, J. Power Sources241 (2013) 231-238.
- [7] Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, Z. Geng, J. Power Sources 242 (2013) 78-85.
- [8] Y. Qian, S. Lu, F. Gao, J. Mater. Sci.46 (2011) 3517-3522.
- [9] Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, G. Shen, ChemElectroChem1 (2014) 559-564.
- [10] M. Kim, Y. Hwang, J. Kim, J. Mater. Sci.48 (2013) 7652-7663.
- [11] A. Pendashteh, M. S. Rahmanifar, R. B. Kaner, M. F. Mousavi, Chem. Commun. 50 (2014) 1972-1975.
- [12] H. Jiang, C. Li, T. Sun, J. Ma, Chem. Commun .48 (2012) 2606-2608.
- [13] J.-X. Feng, Q. Li, X.-F. Lu, Y.-X. Tong, G.-R. Li, J. Mater. Chem. A2 (2014) 2985-2992.
- [14] Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C. M. Li, T. Yu, RSC Adv.3 (2013) 14413-14422.
- [15] M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, L. Chen, J. Mater. Chem. A2 (2014) 2555-2562.