Supporting Information for

Core-shell ZnO/ZnFe₂O₄@C Mesoporous Nanospheres with Enhanced Lithium Storage Properties towards High-performance Li-ion Batteries

Changzhou Yuan *, Hui Cao, Siqi Zhu, Hui Hua, Linrui Hou*

[*] *Prof.* C. Z. Yuan, H. Cao, S. Q. Zhu, *H. Hua, Prof.* L. R. Hou
School of Materials Science & Engineering, Anhui University of Technology, Ma'anshan, 243002,
PR China Email: <u>ayuancz@163.com; houlr629@163.com</u>

Prof. C. Yuan

Chinese Academy of Science (CAS) Key Laboratory of Materials for Energy Conversion, Hefei, 230026, P.R. China

Fig. S1. Wide-angle XRD pattern and typical optical image (the inset) of the resulting ZFC

Fig. S2. TG data for the precursor of ZFC

Fig. S3. Wide-angle XRD pattern and typical optical image (the inset) of the as-obtained ZZFO

Atom	Site	g	Х	У	Z
Zn	8a	1.4903	0	0	0
Fe	16d	1.3044	0.625	0.625	0.625
Ο	192i	1	0.16591	2.09577	-1.13885

Table S1 Atomic coordinates and occupation numbers for the ZFO in the ZZFO@C

 Table S2 Atomic coordinates and occupation numbers for the ZnO in the ZZFO@C

Atom	Site	g	Х	у	Z
Zn	2b	0.9915	1/3	2/3	0
0	2b	1.1282	1/3	2/3	0.38314

Fig. S4. TG analysis of the core-shell ZZFO@C under air flow with a temperature ramp of 10 $^{\circ}$ C min⁻¹

Fig. S5. Raman spectrum of the as-prepared core-shell ZZFO@C

To further verify the carbon species in the core-shell sample, corresponding Raman spectrum of the core-shell ZZFO@C from 888 to 2585 cm⁻¹ is demonstrated in **Figure S5**. Two typical vibrational modes of carbonaceous materials, that is, the D-band centered at ~1348 cm⁻¹ (A_{1g}) and the G-band sitting at ~1567 cm⁻¹ (E_{2g}),^{1, 2} are distinctly presented. And the intensity ratio of the D-to G-band is estimated as ~1.3.

- [1] L. Zhou, S. Q. Zhu, H. Cao, L. R. Hou, C. Z. Yuan, Green Chem., 2015, 17, 2373.
- [2] L. R. Hou, L. Lian, D. K. Li, G. Pang, J. F. Li, X. G. Zhang, S. L. Xiong, S. L. Xiong, *Carbon*, 2013, 64, 141.

Fig. S6. Overview survey XPS spectrum of the as-prepared ZFC precursor

Fig. S7. FESEM (a) and TEM (b) images of the as-prepared ZFC precursor

The uniform–contrast TEM image of the nanospheres clearly confirms its solid nature.

Fig. S8. EDXA spectrum of the as-synthesized core-shell ZZFO@C

Fig. S9. Normalized capacity at each current step (Fig. 6c) by the average capacity under a current rate of 100 mA g^{-1} of the initial step

Fig. S10. EIS spectra of the ZZFO@C and ZZFO anodes at an open circuit voltage state using fresh cells as indicated

As seen from **Figure S9**, both of the two consist of a semicircle in the high to medium frequency region (100 - 10 kHz) and an inclined line in the low frequency range from (100 - 0.01 kHz). Of note, the diameter of high-frequency semicircle for the ZZFO@C anode is obviously smaller than that of the ZZFO, which indicates the smaller charge-transfer resistance (R_{CT}) of the fresh ZZFO@C. After fitted, the R_{CT} values are 287 and 176 Ohm, respectively, for the ZZFO and ZZFO@C. In addition, the intersections of these EIS plots with the X-axis, which represent solution resistance (R_s), including the resistance of the electrolyte itself, the intrinsic resistances of electroactive material itself and the contact resistance between electroactive material and current collector, are ~2.5 (ZZFO@C) and ~5.1 (ZZFO) Ohm for the two, as tabluated in **Table S4**.

Electrode materials	The 1 st CE	Specific capacity (mAh g-	Ref.
	(%)	¹)/cycle number/current	
		density (mA g ⁻¹)	
ZZFO@C	~76	~718/500/1000	This study
York-shell ZnFe ₂ O ₄	~74	~ <mark>862/200</mark> /500	[1]
ZnFe ₂ O ₄ @C/graphene	~67	~712/232/50	[2]
ZnFe ₂ O ₄ -C composites	~81	~681/71/100	[3]
ZnFe ₂ O ₄ nano-fibers	~71	~733/30/60	[4]
ZnFe ₂ O ₄ nanoparticles	~68	~615/50/60	[5]
ZnFe ₂ O ₄ /C hollow spheres	~67	~ <mark>841/30</mark> /65	[6]
ZnFe ₂ O ₄ nano-octahedrons	~77	~730/300/1000	[7]
ZnFe ₂ O ₄ /graphene	~64	~ <mark>398/90</mark> /400	[8]
ZnFe ₂ O ₄ hollow microspheres	~71	~ 584 / 100 /100	[9]
ZnFe ₂ O ₄ /graphene	~68.6	~ <mark>956/50</mark> /100	[10]
Nano-ZnFe ₂ O ₄	~69	~ <mark>833/50</mark> /116	[11]
ZnO/ZnFe ₂ O ₄ sub-	~70	~ <mark>837/200</mark> /1000	[12]
microcubes			
ZnFe ₂ O ₄ /graphene	~69	~ 464/300/800	[13]

Table S3 Initial Coulombic efficiency (CE) and cycling prperties of the core-shell ZZFO@C anode in this study, compared with some other ZFO-based anodes reported in previous literature

[1] J. M. Won, S. H. Choi, Y. J. Hong, Y. N. Ko, Y. C. Kang, Sci. Rep. 2014, 4, 4857.

[2] L. Lin, Q. M. Pan, J. Mater. Chem. A 2015, 3, 1724.

[3] R. M. Thankachan, M. M. Rahman, I. Sultana, A. M. Glushenkov, S. Thomas, N. Kalarikkal, Y.

Chen, J. Power Sources 2015, 282, 462.

[4] P. F. The, Y. Sharma, S. S. Pramana, M. Srinivasan, J. Mater. Chem. 2011, 21, 14999.

[5] Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Electrochim. Acta 2008, 53, 2380.

[6] Y. F. Deng, Q. M. Zhang, S. D. Tang, L. T. Zhang, S. N. Deng, Z. C. Shi, G. H. Chen, *Chem. Commun.* 2011, 47, 6828.

[7] Z. Xing, Z. C. Ju, J. Yang, H. Y. Xu, Y. T. Qian, Nano Res. 2012, 5, 477.

[8] W. T. Song, J. Xie, S. Y. Liu, G. S. Cao, T. J. Zhu, X. B. Zhao, New J. Chem. 2012, 36, 2236.

[9] L. M. Yao, X. H. Hou, S. J. Hu, Q. Ru, X. Q. Tang, L. Z. Zhao, D. W. Sun, J. Solid State Electrochem. 2013, 17, 2055.

[10] H. Xia, Y. Y. Qian, Y. S. Fu, X. Wang, Solid State Sci. 2013, 17, 67.

[11] Y. Ding, Y. F. Yang, H. X. Shao, *Electrochim. Acta* 2011, 56, 9433.

[12] L. R. Hou, L. Lian, L. H. Zhang, G. Pang, C. Z. Yuan, X. G. Zhang, Adv. Funct. Mater. 2015, 25, 238.

[13] J. Xie, W. T. Song, G. S. Cao, T. J. Zhu, X. B. Zhao, S. C. Zhang, RSC Adv. 2014, 4, 7703.

Table S4 Fitted results from the Nyquist plots (Fig. S10) for the ZZFO and ZZFO@C anodes, respectively

Samples	R _s (Ohm)	R _{CT} (Ohm)
ZZFO	~5.1	~287
ZZFO@C	~2.5	~176