Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

# **Supporting information**

## N- and S- doped mesoporous carbon as metal-free cathode catalysts

## for direct biorenewable alcohol fuel cells

Yang Qiu,<sup>a</sup> Jiajie Huo,<sup>a</sup> Fan Jia,<sup>a</sup> Brent. H. Shanks,<sup>a</sup> Wenzhen Li<sup>\*, a, b</sup>

 a. Chemical and Biological Engineering, Biorenewables Research Laboratory, Iowa State University, Ames, IA, 50011, USA
b. US DOE Ames Lab, Ames, IA 50011, USA
E-mail: wzli@iastate.edu

#### 1. Experimental Section:

Reagents: the precursors of glucose (≥99.5%), Pluronic P123, thiophene (≥99%), iron chloride (≥ 99.99%) and potassium hydroxide (≥85%) were purchased from were Sigma-Aldrich; hydrochloric acid (37.5%), hydrofluoric acid (51.0%) and sulfuric acid (98.0%) were brought from Fisher Scientific; commercial 20wt% and 40wt% Pt/C was gained from FuelCell Store. Anhydrous ammonia gas (NH3) (99.999%)was obtained from Airgas. All reagents were directly used without any further purification.



#### 2. Supplementary Figures:

Fig. S1 SEM image of CMK-3.



Fig. S2 TEM images of (a) N-S-CMK-3 700 °C and (b)N-S-CMK-3 900 °C.



Fig. S3. Nitrogen adsorption-desorption isotherms and pore size distribution (Inset) of (a) SBA-15 and (b) CMK-3.



Fig. S4 Wide-angle XRD patterns of N-S-CMK-3 800 °C and CMK-3 catalysts



Fig. S5 (a) EDS spectrum of N-S-CMK-3 800 °C; (b-d) EDS elemental mapping in conjunction with the TEM images of N and S in

N-S-CMK-3 800 °C.



Fig S6 XPS high-resolution spectrum of (a)  $Fe_{2p}$  and (b)  $C_{1s}$  (b) of N-S-CMK-3 800 °C.



Fig. S7 Potential calibration of the Hg/HgO reference electrode in 0.1 M H<sub>2</sub>-saturated KOH solution. In this case, the potentials showed were calculated by the following equation: E(RHE) = E(Hg/HgO) + 0.888 V



Fig. S8 Polarization curves of cyclic voltammetry (CV) tests for N-S-CMK-3 800 °C in 0.1M KOH solution saturated with N<sub>2</sub> (dash line) and O<sub>2</sub> (solid line) at a scan rate of 50 mV s<sup>-1</sup>.



Fig. S9 Tafel plots of ORR currents for N-S-CMK-3 800 °C and commercial Pt/C catalysts



Fig. S10 Kinetic limiting current density ( $j_k$ ) and the calculation of electron transfer number for CMK-3 based and commercial

Pt/C catalysts at 0.5V.



Fig. S11 Polarization curves of commercial Pt/C before and after 3000 potential cycles in O<sub>2</sub>-saturated 0.1M KOH solution.



Fig. S12 Time-drifting stability of the N-S-CMK-3 800 °C and commercial Pt/C at 0.5 V vs. RHE for 45000 s with a rotating rate of 1600 rpm.



Fig. S13 Polarization and power density curves of direct biorenewable alcohol fuel cell with the N-S-CMK-3 800 °C (loading 2.0 mg cm<sup>-2</sup>) and commercial Pt/C (loading 1.0 mg<sub>Pt</sub> cm<sup>-2</sup>) cathode fed by 1.0 M ethanol + 0.1 M KOH or 1.0 M sorbitol + 0.1 M KOH at 50 °C.



Fig. S14 Polarization and power density curves of direct glycerol fuel cell with the N-S-CMK-3 800 °C cathode (loading 2.0 mg  $cm^{-2}$ ) at 50 °C and different O<sub>2</sub> back pressures.



Fig. S15 High-resolution spectra of  $N_{1s}$  for (a) N-S-CMK-3 700 °C and (b) N-S-CMK-3 900 °C



Fig. S16 High-resolution spectra of  $N_{1\text{s}}$  for N-CMK-3

| Table S1 The textural par | arameters and element atomic concentrations of different catal | lysts |
|---------------------------|----------------------------------------------------------------|-------|
|---------------------------|----------------------------------------------------------------|-------|

| Catalyst            | BET surface                           | Total pore      | Element atomic concentration / atom % |      |      |      |      |
|---------------------|---------------------------------------|-----------------|---------------------------------------|------|------|------|------|
|                     | area / m <sup>2</sup> g <sup>-1</sup> | g <sup>-1</sup> | С                                     | Ν    | S    | 0    | Fe   |
| CMK-3               | 1126                                  | 1.215           | 96.51                                 | N/A  | N/A  | 3.33 | N/A  |
| N-S-CMK-3<br>700 °C | 784                                   | 0.821           | 90.12                                 | 6.40 | 1.11 | 2.29 | 0.08 |
| N-S-CMK-3<br>800 °C | 1023                                  | 0.973           | 94.07                                 | 3.84 | 0.83 | 1.14 | 0.12 |
| N-S-CMK-3<br>900 °C | 921                                   | 0.701           | 97.64                                 | 1.27 | 0.20 | 0.87 | 0.02 |
| N-CMK-3 800 °C      | N/A                                   | N/A             | 93.31                                 | 4.88 | N/A  | 1.77 | 0.04 |
| S-CMK-3 800 °C      | N/A                                   | N/A             | 97.07                                 | N/A  | 1.21 | 1.57 | 0.15 |

From the high-resolution XPS spectum, slight Si signal was observed on CMK-3. For element atomic concentration calculations, Si was eliminated from catalysts except the CMK-3.

| Catalysts                           | ORR onset<br>potential<br>(vs. RHE) | ORR Tafel<br>slope<br>(mV dec <sup>-1</sup> ) | Potential at<br>-3 mA cm <sup>-2</sup><br>(vs. RHE) | Catalysts<br>loading<br>(mg cm <sup>-2</sup> ) | Electron transfer<br>number (n) at<br>0.5V vs. RHE | Electrolyte | Ref.      |
|-------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------|-----------|
| 800 °C<br>N-S-CMK-3                 | 0.92                                | 68                                            | 0.78                                                | 0.306                                          | 3.96                                               | 0.1M KOH    | This work |
| N-S-G                               | 0.91                                | N.A                                           | N.A.                                                | ~0.2                                           | 3.6                                                | 0.1M KOH    | 1         |
| PCN-CFP                             | 0.94                                | 122.3                                         | N.A.                                                | ~0.2                                           | 3.9                                                | 0.1M KOH    | 2         |
| N-S doped<br>graphene/CNT           | 0.85                                | N.A.                                          | 0.72                                                | 0.407                                          | 3.8                                                | 0.1M KOH    | 3         |
| Fe-N/C                              | 0.92                                | N.A                                           | 0.81                                                | 0.1                                            | 4.0                                                | 0.1M KOH    | 4         |
| FeSO <sub>4</sub> -PEI              | 0.79                                | 58                                            | 0.68                                                | 0.4                                            | 3.8                                                | 0.1M KOH    | 5         |
| Mn <sub>3</sub> O <sub>4</sub> /pGC | 0.75                                | ~85                                           | ~0.7                                                | ~0.0001                                        | 4.0                                                | 0.1M KOH    | 6         |

Table S2 Comparison of the ORR activity of N-S-CMK-3 with other electrocatalysts.