Electronic Supplementary Information

Critical Advances for the Iron Molten Air Battery: A New Lowest

Temperature, Rechargeable, Ternary Electrolyte Domain

Shuzhi Liu,^{ab} Xin Li, ^{ab} Baochen Cui,^{*ab} Xianjun Liu,^{ab} Yulan Hao,^{ab} Qi Guo,^{ab} Peiqiang Xu^{a,b} and Stuart Licht^{*c}

^aCollege of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China

- ^b Province Key Laboratory of Oil and Natural Gas Chemical Industry, Northeast Petroleum University, Daqing 163318, China
- ^c Department of Chemistry, George Washington University, Washington DC 20052, USA

*Corresponding author: E-mail:cuibaochen2005@163.com E-mail: slicht@gwu.edu

Fig.S1 TG/DTA of Fe_2O_3 and NaOH mix for confirmation of the reaction of Fe_2O_3 with molten NaOH to form H_2O and NaFeO₂.

Fig.S2 XRD analysis of Fe_2O_3 and NaOH mix and pure Fe_2O_3 . XRD analysis is conducted at a sweep rate of 0.2 degree per minute on a Rigaku D/MAX-2200 diffractometer and analyzed with the Jade software package (MDI Jade 5.0, Materials Data, Inc.).