ESI:

Facile fabrication of mesoporous BiOCl/(BiO)₂CO₃/Bi₂O₃ ternary flower-like heterostructured microspheres with high visible-lightdriven photoactivity

Atangana Etogo,^a Enlai Hu,^a Chunmei Zhou,^b Yijun Zhong,^a Yong Hu^{a,b*} and Zhanglian Hong^{b,*}

^aInstitute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China. Email: <u>yonghu@zjnu.edu.cn</u>

^b State Key Lab of Silicon Materials, College of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China, E-mail: <u>hong_zhanglian@zju.edu.cn</u>

Fig.S1 XRD patterns of as-prepared sample HMS-1 and HMS-3.

Fig. S2 SEM images of the as-prepared (a) $BiOCl/(BiO)_2CO_3$ and (b) $Bi_2O_3/(BiO)_2CO_3$ binary composites.

Fig. S3 XRD pattern of as-prepared pure (BiO)₂CO₃ microspheres.

Fig.S4 XRD pattern of as-prepared Bi₂O₃/(BiO)₂CO₃ binary composites

Fig. S5 .Cycling times of the photocatalytic degradation of MO in the presence of mesoporous flower-like $BiOCl/(BiO)_2CO_3/Bi_2O_3$ (HMS-2) under solar light irradiation.

Fig. S6 XRD pattern of mesoporous flower-like $BiOCl/(BiO)_2CO_3/Bi_2O_3$ (HMS-2) after 3 cycles of photodegradation of MO.

Fig. S7 Photocatalytic degradation of the MO and Phenol mixture in the presence of different photocatalysts under visible-light illumination.

Fig. S8 Schematic diagram of charge transfer between n-Type $(BiO)_2CO_3$ and p-Type Bi_2O_3 before contact.

Fig. S9 Electrochemical impedance spectra of the as-prepared mesoporous flower-like $BiOCl/(BiO)_2CO_3/Bi_2O_3$ (HMS-2) and different $BiOCl/(BiO)_2CO_3$, $Bi_2O_3/(BiO)_2CO_3$ binary hetero-nanostructures.