Supporting information

Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anode

Xiaojian Jiang,^b Wei Yu,^c Hui Wang,^d Huayun Xu,^c Xizheng Liu,^{a*} and Yi Ding^{a*}

^a Institute for New Energy Materials and Low-Carbon Technologies, and School of

Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China

^b Xiamen Products Quality Supervision & Inspection Institute, Xiamen 361004, P.R. China

^c Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China

^d Environmental Protection Administration of Linyi, Linyi Shandong 276000, P.R. China

*Corresponding authors: Dr. Xizheng Liu<u>xzliu@tjut.edu.cn</u> Prof. Dr. Yi Ding <u>yding@tjut.edu.cn</u>

Fig. S1. The colour changes of pH before and after sodium hydroxide produced was washed by ultra-pure water.

Fig. S2. The nitrogen adsorption-desorption isotherms of porous MnO@C/CNTs.

Fig. S3. TEM image of MnO/CNTs.

Fig. S4. XRD pattern of MnO/CNTs.

Fig. S5. XPS spectra of MnO@C/CNTs: (a) survey scan, (b) high-resolution Mn 2p peaks.

Fig. S6. SEM of porous MnO@C/CNTs.

Fig. S7. Cycling volumetric capacity performance of porous MnO@C/CNTs at different cycles with a current density of 200 mA g⁻¹ in the range of 0.05-3.0 V.

Fig. S8. Discharge capacities of MnO@C/CNTs and commercial graphite electrodes at 200 mA g^{-1} after 20 cycles.

Fig. S9. Cycling performance of porous MnO@C/CNTs at different cycles with a current density of 200 mA g⁻¹ in the range of 0.05-1.5 V.

Fig. S10. Nyquist plots of porous MnO@C/CNTs electrodes charged to 3 V after different discharge/charge cycles at 500 mA g⁻¹.

MnO-based	Current	Cycle	After cycle capacity	Ref.	Year
anode materials	density	number	(mA h g ⁻¹)		
MnO/graphene oxide sheet	100 mA g ⁻¹	50	665.5	38	2012
MnO@C Nanowires	500 mA g ⁻¹	200	801	19	2013
Mesoporous MnO/C Networks	200 mA g ⁻¹	200	1224	29	2013
Porous MnO/C microspheres	100 mA g ⁻¹	50	700	11	2013
MnO/MWNTs composite rods	310 mA g ⁻¹	200	455	17	2013
Porous MnO@C microspheres	100 mA g ⁻¹	100	525.4	9	2014
MnO/Carbon Nanopeapods	500 mA g ⁻¹	100	1119	8	2014
MnO/MWNTs composite sphere	130 mA g ⁻¹	200	597	22	2014
Peanut-like MnO@C composites	200 mA g ⁻¹	200	952	39	2014
Hollow MnO nanospheres	500 mA g ⁻¹	150	1050	32	2014
MnO nanowire/graphene	500 mA g ⁻¹	470	930	21	2014
Porous MnO _x microspheres	500 mA g ⁻¹	100	757	12	2015
Porous MnO@C/CNTs	200 mA g ⁻¹	300	1453	this work	this work
Porous MnO@C/CNTs	500 mA g ⁻¹	300	1266	this work	this work

 Table S1. Comparison of cycling performances of MnO-based anode materials.