Electronic Supplementary Information

Dithieno[3,2-*b*:2',3'-*d*]pyridin-5(4*H*)-one-based polymers with bandgap up to 2.02 eV for high performance field-Effect transistors and polymer solar cells with open-circuit voltage up to 0.98 V and efficiency up to 6.84%

Minghui Hao,^a Guoping Luo,^b Keli Shi,^c Guohua Xie,^a Kailong Wu,^a Hongbin Wu,^{*,b} Gui Yu,^{*,c} Yong Cao, and Chuluo Yang^{*,a}

^{*a*} Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China.

^b Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

^{*c*} Beijing National laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.

Table of Contents

- 1. TGA plots of the polymers
- 2. Cyclic voltammogram of PDTPO
- 3. Cyclic voltammograms of PDTPO-BDTO and PDTPO-BDTT
- 4. Detailed data of the field-effect transistor of PDTPO
- 5. DFT calculations of all the polymers
- 6. The structures of the devices
- 7. Equivalent circuit model of the PSCs under illumination
- 8. Current density-voltage characteristics of PDTPO-BDTO and PDTPO-BDTT blends with

PC₇₁BM in SCLC devices

- 9. The extracted electrical parameters of the conventional devices
- 10. The extracted electrical parameters of the inverted devices
- 11. Stability curves of the PDTPO-BDTO and PDTPO-BDTT devices versus storage time in air
- 12. Normalized device performance after ageing in air
- 13. ¹H NMR and ¹³C NMR spectra

Fig. S1 TGA plots of the polymers with a heating rate of 10 K/min under the nitrogen atmosphere.

Fig. S2 Cyclic voltammogram of PDTPO thin film coated onto a platinum plate in an acetonitrile solution of 0.1 M n-Bu₄NPF₆ at a scan rate of 100 mV s⁻¹.

Fig. S3 Cyclic voltammogram of PDTPO-BDTO and PDTPO-BDTT thin films coated onto a platinum plate in an acetonitrile solution of 0.1 M n-Bu₄NPF₆ at a scan rate of 100 mV s⁻¹.

Table S1. OFET hole mobility of PDTPO at different annealing temperatures.

Condition	As-cast	80 °C	160 °C	240 °C
mobility (cm ² V ⁻¹ s ⁻¹)	0.011	0.033	0.04	0.19

Fig. S4 DFT calculations of the trimer of PDTPO, and five units of PDTPO-BDTO and PDTPO-BDTT.

Fig. S5 The structure of the conventional (a) and inverted (b) devices investigated in this work.

Fig. S6 Equivalent circuit model of the polymer solar cell under illumination.

Fig. S7 Current density-voltage characteristics of PDTPO-BDTO and PDTPO-BDTT blends with $PC_{71}BM$ in SCLC devices.

polymer		PDTPO-BDTO	PDTPO-BDTO
	$R_{\rm s}{}^b \left(\Omega \ {\rm cm}^2\right)$	2.15	9.40
as cast ^a	$R_{\rm p}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	7.44×10 ²	9.19×10 ⁴
	n	4.65	5.92
THF 0 s + PFN ^a	$R_{\rm s}{}^b \left(\Omega \ {\rm cm}^2\right)$	2.64	0.10
	$R_{\rm p}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	1.19×10 ³	1.48×10 ³
	n	3.02	3.25
THF 30 s + PFN ^{<i>a</i>}	$R_{\rm s}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	2.86	2.72
	$R_{\rm p}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	1.49×10 ³	1.64×10 ³
	n	2.22	2.27
THF 60 s + PFN <i>a</i>	$R_{\rm s}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	1.27	1.86
	$R_{\rm p}^{\ b} \left(\Omega \ {\rm cm}^2\right)$	1.16×10 ³	4.10×10 ²
	n	2.88	2.33

Table S2. The extracted electrical parameters of the conventional devices based on the J-V characteristics of Fig. 5a and 5b.

^{*a*} Fitting with the equation (1) based on the equivalent circuit model illustrated in Fig. S6. ^{*b*} R_s (series resistance) and R_p (parallel resistance) are extracted by the fitting and these two values are different from those calculated from the slopes of the *J*-*V* curves at *J* = 0 and *V* = 0 under illumination.

$$J = J_{\rm ph} - J_0 [\exp(\frac{V + JR_{\rm s}}{nkT/q}) - 1] - \frac{V + JR_{\rm s}}{R_{\rm p}}$$
(1)

where $J_{\rm ph}$ is the photocurrent, J_0 the diode saturation current, *n* the diode quality factor, $R_{\rm s}$ the series resistance, and $R_{\rm p}$ the parallel (shunt) resistance.

polymer	$R_{\rm s}$ (Ω cm ²)	$R_{\rm p} \left(\Omega \ {\rm cm}^2\right)$	n
PDTPO-BDTO	1.99	9.83×10 ⁴	4.92
PDTPO-BDTT	3.43	8.98×10 ⁴	3.42

 Table S3. The extracted electrical parameters of the inverted devices.

Fig. S8 Stability curves of the PDTPO-BDTO and PDTPO-BDTT devices versus storage time in air. (a) normalized V_{oc} , (b) normalized J_{sc} , (c) normalized FF.

Table S4. Normalized conventional device performance after 120 h of ageing in air.

	$V_{\rm oc}\left({ m V} ight)$	$J_{\rm sc}$ (mA cm ⁻²)	FF	PCE
PDTPO-BDTO	0.91	0.89	0.86	0.70
PDTPO-BDTT	0.86	0.89	0.90	0.68

 Table S5. Normalized inverted device performance after 200 h of ageing in air.

	$V_{\rm oc}({ m V})$	$J_{\rm sc}$ (mA cm ⁻²)	FF	PCE
PDTPO-BDTO	1.00	0.80	0.96	0.77
PDTPO-BDTT	1.02	0.95	0.96	0.93

Fig. S9 ¹H NMR spectrum of 2 conducted in *d*-chloroform at 298K.

Fig. S10 ¹³C NMR spectrum of 2 conducted in *d*-chloroform at 298K.

Fig. S11 ¹H NMR spectrum of DTPO conducted in *d*-chloroform at 298K.

Fig. S12 ¹³C NMR spectrum of DTPO conducted in *d*-chloroform at 298K.

Fig. S13 ¹H NMR spectrum of M1 conducted in *d*-chloroform at 298K.

Fig. S14 ¹³C NMR spectrum of M1 conducted in *d*-chloroform at 298K.

Fig. S15 ¹H NMR spectrum of PDTPO conducted in *d*-chloroform at 298K.

Fig. S16 ¹H NMR spectrum of PDTPO-BDTO conducted in *d*-chloroform at 298K.

Fig. S17 ¹H NMR spectrum of PDTPO-BDTT conducted in *d*-chloroform at 298K.