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Fig. S1 TGA plots of the polymers with a heating rate of 10 K/min under the nitrogen 

atmosphere.
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Fig. S2 Cyclic voltammogram of PDTPO thin film coated onto a platinum plate in an 

acetonitrile solution of 0.1 M n-Bu4NPF6 at a scan rate of 100 mV s-1.
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Fig. S3 Cyclic voltammogram of PDTPO-BDTO and PDTPO-BDTT thin films coated onto a 

platinum plate in an acetonitrile solution of 0.1 M n-Bu4NPF6 at a scan rate of 100 mV s-1.
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Table S1. OFET hole mobility of PDTPO at different annealing temperatures.

Condition As-cast 80 °C 160 °C 240 °C

mobility (cm2 V-1 s-1) 0.011 0.033 0.04 0.19
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Fig. S4 DFT calculations of the trimer of PDTPO, and five units of PDTPO-BDTO and 

PDTPO-BDTT.
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Fig. S5 The structure of the conventional (a) and inverted (b) devices investigated in this 

work.
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Fig. S6 Equivalent circuit model of the polymer solar cell under illumination.
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Fig. S7 Current density-voltage characteristics of PDTPO-BDTO and PDTPO-BDTT blends 

with PC71BM in SCLC devices.
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Table S2. The extracted electrical parameters of the conventional devices based on the J-V 

characteristics of Fig. 5a and 5b.

polymer PDTPO-BDTO PDTPO-BDTO

Rs
b (Ω cm2) 2.15 9.40

Rp
b (Ω cm2) 7.44×102 9.19×104as cast a

n 4.65 5.92

Rs
b (Ω cm2) 2.64 0.10

Rp
b (Ω cm2) 1.19×103 1.48×103THF 0 s + PFN a

n 3.02 3.25

Rs
b (Ω cm2) 2.86 2.72

Rp
b (Ω cm2) 1.49×103 1.64×103THF 30 s + PFN a

n 2.22 2.27

Rs
b (Ω cm2) 1.27 1.86

Rp
b (Ω cm2) 1.16×103 4.10×102THF 60 s + PFN a

n 2.88 2.33

a Fitting with the equation (1) based on the equivalent circuit model illustrated in Fig. S6. b Rs 

(series resistance) and Rp (parallel resistance) are extracted by the fitting and these two values 

are different from those calculated from the slopes of the J-V curves at J = 0 and V = 0 under 

illumination.

                        (1)s s
ph 0

p

[exp( ) 1]
/

 
   

V JR V JRJ J J
nkT q R

where Jph is the photocurrent, J0 the diode saturation current, n the diode quality factor, Rs the 

series resistance, and Rp the parallel (shunt) resistance.
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Table S3. The extracted electrical parameters of the inverted devices.

polymer Rs (Ω cm2) Rp (Ω cm2) n

PDTPO-BDTO 1.99 9.83×104 4.92

PDTPO-BDTT 3.43 8.98×104 3.42
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Fig. S8 Stability curves of the PDTPO-BDTO and PDTPO-BDTT devices versus storage time 
in air. (a) normalized Voc, (b) normalized Jsc, (c) normalized FF.
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Table S4. Normalized conventional device performance after 120 h of ageing in air.

Voc (V) Jsc (mA cm-2) FF PCE
PDTPO-BDTO 0.91 0.89 0.86 0.70
PDTPO-BDTT 0.86 0.89 0.90 0.68

Table S5. Normalized inverted device performance after 200 h of ageing in air.

Voc (V) Jsc (mA cm-2) FF PCE
PDTPO-BDTO 1.00 0.80 0.96 0.77
PDTPO-BDTT 1.02 0.95 0.96 0.93



S15

Fig. S9 1H NMR spectrum of 2 conducted in d-chloroform at 298K.

Fig. S10 13C NMR spectrum of 2 conducted in d-chloroform at 298K.
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Fig. S11 1H NMR spectrum of DTPO conducted in d-chloroform at 298K. 

Fig. S12 13C NMR spectrum of DTPO conducted in d-chloroform at 298K.
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Fig. S13 1H NMR spectrum of M1 conducted in d-chloroform at 298K. 

Fig. S14 13C NMR spectrum of M1 conducted in d-chloroform at 298K.
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Fig. S15 1H NMR spectrum of PDTPO conducted in d-chloroform at 298K.

Fig. S16 1H NMR spectrum of PDTPO-BDTO conducted in d-chloroform at 298K.
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Fig. S17 1H NMR spectrum of PDTPO-BDTT conducted in d-chloroform at 298K.


