Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

A RuO₂ nanoparticle-decorated buckypaper cathode for nonaqueous lithium-air batteries

P. Tan, W. Shyy, T. S. Zhao*, X. B. Zhu and Z. H. Wei

Department of Mechanical and Aerospace Engineering

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong SAR, China

*Corresponding author. Tel.: (852) 2358 8647 E-mail: metzhao@ust.hk (T.S. Zhao)

Figure S1 Photograph of the as-received buckypaper, inset shows a disc-like cathode with a diameter of 8 mm.

Figure S2 TGA curves measured in air atmosphere from 25 °C to 800 °C at a heating rate of 10 °C per min: (a) Buckypaper and (b-c) $RuO_2/Buckypaper$ cathodes with different RuO_2 loadings.

Figure S3 The surface morphology of the Buckypaper cathode, carbon nanotubes with diameters of 20 to 60 nm are weaved to form the porous structure.

Figure S4 Voltage curves of the cathodes with different RuO_2 loadings at the current density of 0.4 mA cm⁻² based on (a) the specific area and (b) the specific weight.

Figure S5 Nitrogen-adsorption-desorption isotherms of the RuO₂/Buckypaper cathodes with different RuO₂ loadings. With the loading of RuO₂ increases from 2.80% to 7.62%, the BET surface area decreases from 48.92 m² g⁻¹ to 43.37 m² g⁻¹. The lower surface area at higher RuO₂ loading can be attributed to the dense RuO₂.^[1]

Figure S6 XPS spectra of C 1s and Ru 3d of the RuO₂/Buckypaper cathode after discharge and charge. The Ru 3d signal exists after discharge and charge, indicating that RuO₂ is stable during the cycling process. The C 1s XPS signal shows the existence of side products, which may be caused by the decomposition of electrolyte and carbon.^[2] It is worth noting that after discharge, both the Ru 3d and C 1s peaks become weak. Thus, the disappearance of (002) peak related to RuO₂ after discharge process is due to the coverage of Li₂O₂, rather than the reduction of RuO₂.

Figure S7 SEM images of the discharged cathode from the oxygen side to the separator side: (a) Buckypaper and (b) $RuO_2/Buckypaper$. 0 corresponds to the cross-section; 1-5 corresponds to the detected point as marked. For the Buckypaper cathode, particle-like discharge product can be observed at point 1. For the $RuO_2/Buckypaper$ cathode, only film-like discharge product can be observed.

References

- [1] Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen and H. Zhou, *Angewandte Chemie-International Edition*, 2014, **53**, 442-446.
- [2] F. Li, D. Tang, T. Zhang, K. Liao, P. He, D. Golberg, A. Yamada and H. Zhou, *Advanced Energy Materials*, 2015, 1500249.