Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone

Ruiqiao Xu, Fengmei Guo, Xian Cui, Li Zhang, Kunlin Wang and Jinquan Wei*

Key Laboratory for Advanced Materials Processing Technology of Education Ministry; State Key Laboratory of New Ceramic and Fine Processing; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China.

E-mail: jqwei@tsinghua.edu.cn; Tel:+86-10-62781065

Calculation method for the supercapacitor performance values

Capacitance (*C*/F), energy storied (*E*/Wh) and power (*P*/W) of FSSCs were evaluated from GCD curves at various discharging current (I/A) following the equations¹: $C = I \times \Delta t / \Delta U$, $E = 0.5 \times C \times \Delta U^2 / 3600$, $P = E/\Delta t \times 3600$, where ΔU (V) is width of voltage window and Δt (s) is discharging time. Specific performance values have much more importance, such as specific capacitance (*C*_s), energy density (*E*_{ds}) and power density (*P*_{ds}). These values in terms of weight (m/g), length (L/cm), area (*S*/cm²) or volume (*V*/cm³) were calculated by dividing *C*, *E* or *P* with *m*, *L*, *S* or *V*. In this paper, m is the total weight of two fiber electrodes measured by an analysis balance, and L is the length of a fiber-shaped supercapacitor measured by a microcalliper. *S* ($= \pi \times D \times L$) is the surface area of a single fiber electrode, and $V (= 2 \times \pi \times (D/2)^2 \times L)$ is the total volume of two fiber electrodes. *D* (cm) represents diameter of a cylinder-shape fiber electrode measured by an optical microscope.

Figures

Fig. S1 Optical images of (a) CNT strips, (b) 3-electrode system for PPy deposition, (c) Spinning process.

Fig. S2 (a) $PVA-H_2SO_4$ gel electrolyte. (b) $PVA-H_2SO_4$ gel electrolyte with HQ.

Fig. S3 CV curves of a pure CNT FSSC at (a) high scan rates, and (b) wide voltage windows.

Fig. S4 (a) Plot of ionic conductivity vs. weight of HQ in 10 mL PVA/H₂SO₄ gel solution. (b) Dependence of specific capacitance of the CNT-PPy-HQ FSSCs on the weight of HQ in 10 mL PVA/H_2SO_4 gel solution.

Fig. S5 CV curves of the CNT-PPy FSSC and the CNT-PPy-HQ FSSC at various scan rate. (a) 20 mV/s, (b) 50 mV/s, (c) 100 mV/s, (d) 200 mV/s.

Fig. S6 CV curves of a CNT-PPy-HQ FSSC at various scan rates of 10~100 mV/s. This FSSC is used for bending, knotting and tensile tests in Fig. 7b-d.

Table S1 Comparison of capacitive performances of FSSCs						
Electrode materials	Electrolyte	C _s F/g	C _l mF/cm	C _a mF/cm ²	C _v F/cm ³	Ref.
CNT fiber	PVA-H ₂ SO ₄	4.9~5.2	2.0~2.2	32~34	3.2~3.3	
CNT fiber	PVA-H ₂ SO ₄ -HQ	7.8~8.0	3.1~3.2	48~49	4.7~4.9	This
CNT-PPy fiber	$PVA-H_2SO_4$	33.6~36.1	118.5~127.4	574~588	15.9~17.0	work
CNT-PPy fiber	PVA-H ₂ SO ₄ -HQ	50.1~55.7	181.6~202.0	1051~1168	38.2~42.5	
CNT-MnO ₂ fiber & CNT fiber ^a	PVA-KOH		0.261	27.98	35.19	2
CNT-MC fiber	PVA-H ₂ SO ₄ -PySH		17.51	507.02	0.184	3
MnO ₂ -CNP-CF fiber & CNP-CF fiber ^a	PVA-LiCl				4.6	4
MnO ₂ -PPy-CF fiber & V ₂ O ₅ -PANI-CF fiber ^a	LiCl (liquid)			613	19.52	5
MnO ₂ -RGO-CF fiber & CH-CW fiber ^a	ΡΑΑΚ-ΚΟΙ			50.8	2.53	6
G fiber ^b	$PVA-H_2SO_4$	182	4.63	205		7
CNT fiber	$PVA-H_2SO_4$			4.28	11.4	8
rGO-CNT-CMC fiber	PVA-H ₃ PO ₄		5.3	117	158	9
MnO ₂ -RGO fiber	$PVA-H_2SO_4$	36	0.143	9.6		10
rGO fiber	$PVA-H_2SO_4$	40	0.0271	1.7		11
rGO-CNT fiber	PVA-H ₃ PO ₄	31.5	0.0271	4.97		12
Pen ink-Au-plastic fiber	H ₂ SO ₄ (liquid)		0.504	19.5		13

Table

 $C_s/C_l/C_a/C_v$ are the specific/liner/areal/volumetric capacitance of the FSSCs. Capacitances in this manuscript are evaluated from GCD curves at current densities of 0.2~1.0 A/g. There are three device structures in the literature: asymmetric, coaxial, and symmetric. The superscript of "a" means a FSSC with asymmetric structure. The superscript of "b" means a FSSC with coaxial structure. The else are FSSCs with symmetric and parallel structure. In previous papers by Yu et al.¹ and Xu et al.², the comparison of specific capacitance for different FSSCs are also provided.

References

- 1 D.S. Yu, Q.H. Qian, L. Wei, W.C. Jiang, K.L. Goh, J. Wei, J. Zhang and Y. Chen, Chem. Soc. Rev., 2015, 44, 647-662.
- 2 P. Xu, B.Q. Wei, Z.Y. Cao, J. Zheng, K. Gong, F.X. Li, J.Y. Yu, Q.W. Li, W.B. Lu, J.H. Byun, B.S. Kim, Y.S. Yan and T.W. Chou, ACS Nano, 2015, 9, 6088-6096.
- 3 S. Pan, J. Deng, G. Guan, Y. Zhang, P. Chen, J. Ren and H. Peng, J. Mater. Chem. A, 2015, 3, 6286-6290.
- 4 H. Jin, L. Zhou, C. L. Mak, H. Huang, W. M. Tang and H. L. Wa Chan, J. Mater. Chem. A, 2015, 3, 15633-15641.
- 5 W. Liu, N. Liu, Y. Shi, Y. Chen, C. Yang, J. Tao, S. Wang, Y. Wang, J. Su, L. Li and Y. Gao, J. Mater. Chem. A, 2015, **3**, 13461-13467.
- 6 Z. Zhang, F. Xiao and S. Wang, J. Mater. Chem. A, 2015, 3, 11215-11223.
- 7 X. Zhao, B. Zheng, T. Huang and C. Gao, *Nanoscale*, 2015, **7**, 9399-9404.
- 8 P. Xu, T. Gu, Z. Cao, B.Q. Wei, J. Yu, F.X. Li, J. H.S. Byun, W.B. Lu, Q.W. Li and T.W. Chou, Adv. Energy Mater., 2014, 4, 1300759.
- 9 L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun and C. Gao, Nat. Commun., 2014, 5,3754.
- 10 Q. Cheng, Y. Meng, C.Hu, Y, Zhao, H, Shao, N. Chen and L. Qu, J. Power Sources, 2014, 247, 32-39.
- 11 Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi and L. Qu, Adv Mater., 2013, 25, 2326-2331.

- 12 J. Ren, L. Li, G. Guan, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu and H.S. Peng, *Adv. Mater.*, 2013, **25**, 1155-1159.
- 13 Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou, *Adv. Mater.*, 2012, **24**, 5713-5718.