Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Hybrid Cathode Architectures for Lithium Batteries based on TiS2 and Sulfur

Lin Ma,^a Shuya Wei,^b Houlong Zhuang,^a Kenville Hendrickson,^b Richard Hennig,^a and Lynden A. Archer^{* b}

Supporting information

^bSchool of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA. Email: <u>laa25@cornell.edu</u>

Electronic supporting information (ESI) available.

^aDepartment of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.

Figure S1. (a) Cycling performance of TiS_2 , sulfur and TiS_2/S_8 hybrid electrode at 0.1C. Performance of (b) TiS_2 electrode, (c) sulfur electrode (d) TiS_2/S_8 hybrid cycled at various current rates (0.1C, 0.2C, 0.5C, 0.1C, 1C, 0.2C).

Cathode materials	First discharge	Capacity after 30	Degradation	Utilization rate(%)+
	capacity (mAh/g)*	cycles (mAh/g)*	rate per cycle	
			(%)	
80% Sulfur cathode	603	189	2.3	36
50% Sulfur + 30% TiS ₂ cathode	950	600	1.2	84

Table S1. Comparison of the performance of different cathode materials.

* The capacity is calculated based on the weight of the total active materials.

+ Utilization rate = Experimental Capacity/Theoretical Capacity.

Figure S2. (a) SEM of Ti metal foam. Scale bar= $20 \ \mu m$.(b) XRD analysis of Ti metal foam.

Figure S3. XRD analysis of the TGA products.

Figure S4. SEM images of (a)TSF5; (b)TSF10; (c) TSF15. Scale bar=20 µm.

Figure S5. (a) Comparison of Raman spectra of 1. Sulfur powder. 2. TiS_2 powder. 3. TSF5. 4. TSF10. 5. TSF15. (b) Zoom-in spectra of sulfur.

Figure S6. XRD analysis of the discharge products of (a) Sulfur electrode. (b) TiS_2 electrode. (c) TSF15.

Method 1

Method to determine content of Sulfur, TiS_2 and Ti metal content using

Thermogravimetric analysis (TGA).

- 1. Ti metal
- $2. \ TiS_2$
- 3. TSF5
- 4. TSF10
- 5. TSF15

Use curve4 as an example. Set the percentage% of sulfur, TiS_2 and Ti as x, y, z respectively.

x+y+z=100

y+z=80

 $y*79.866(TiO_2)/111.997(TiS_2)+z=59$

x=20;

y=73;

z=7.

Method 2

Estamination of the capacity based on the mass of the whole electrode

The areal weight with 4.7mg/cm^2 of Al current collector is used here to calculate S wt% in total cathode weight.

For example, in reference 6, sulfur loading is 1.13 mg/cm^2 , percentage of sulfur in the electrode slurry is 59 wt% and a capacity ~ 1100 mAh/g is obtained in 20th cycle.

Capacity based on the whole electrode =

*1100mAh/g*1.13mg/cm^21.13mg/cm^2/0.59+4.7mg/cm^2* = 181 mAh/g