Supplementary Materials

Dual-Template Synthesis of Ordered Mesoporous Carbon/Fe₂O₃ Nanowires: High Porosity and Structural Stability for Supercapacitors

Junkai Hu, Malachi Noked, Eleanor Gillette, Fudong Han, Zhe Gui, Chunsheng Wang, and Sang Bok Lee*

Calculations

1. The mesopore volume difference between OMC/Fe₂O₃ composites and their corresponding OMCs (ΔV_{meso} %) is calculated by Equation S1:

$$\Delta V_{meso}\% = \frac{V_{meso-C} - V_{meso-CFe} / (1 - Fe_2 O_3 \%)}{V_{meso-C}} \times 100$$

where V_{meso-C} is the mesopore volume of the original OMC, $V_{meso-CFe}$ is mesopore volume of OMC/Fe₂O₃ composite, and Fe_2O_3 % is the mass percentage of Fe₂O₃ in the OMC/Fe₂O₃, so that $V_{meso-CFe}/(1-Fe_2O_3\%)$ is the mesopore volume of OMC/Fe₂O₃ composite normalized by carbon mass.

2. All specific capacitance values were obtained using the data from the cyclic voltammetry (CV) curves through the following equation (the capacitance of Ni current collector has been subtracted):

$$C_{sp} = \frac{\int_{-0.8}^{0} IdV + \int_{0}^{-0.8} IdV}{2 \times 0.8 \times v \times mass}$$
(S2)

where I is the current, V is the voltage vs. Ag/AgCl, 0.8 V is the voltage window, v is the scan rate, and *mass* is the mass of the mesoporous material.

Figures & Tables

Figure S1 High resolution SEM of OMCNW/Fe₂O₃.

Figure S2 N_2 adsorption-desorption isotherms (a) and pore size distributions (b) of FDU-15, CMK-8, and their derived OMC/Fe₂O₃ composites.

Figure S3 (a, b) Pore size distribution of (a) FDU-15, and (b) OMCNW annealed at different temperatures. (c-f) High-resolution TEM (HRTEM) of (c) FDU-15 annealed at 350 °C, (d) OMCNW annealed at 350 °C, (e) FDU-15 annealed at 900 °C, (f) OMCNW annealed at 900 °C, all scale bars are 50 nm, the red labels indicate the mesopore wall thickness.

Figure S4 TGA curves of FDU-15/Fe₂O₃ (16.4 wt%), CMK-8/Fe₂O₃ (51.9 wt%), and OMCNW/Fe₂O₃ (58.3 wt%).

Figure S5 HRTEM of (a) FDU-15/Fe₂O₃, (b) CMK-8/Fe₂O₃, and (c) OMCNW/Fe₂O₃, all scale bars are 50 nm.

Figure S6 (a) XPS and (b) XRD spectrums of OMC/Fe₂O₃ composites.

Figure S7 Specific capacitance of OMCNW/Fe₂O₃ with different Fe₂O₃ % at the scan rates of 5 mV s⁻¹ and 50 mV s⁻¹.

Figure S8 TEM images of (a) FDU-15/Fe₂O₃, (b) CMK-8/Fe₂O₃, (c) OMCNW/Fe₂O₃ after 1000 cycles, all scale bars are 200 nm.

Table S1 Mesopore volume change in OMCs & OMC/Fe₂O₃ composites*

Sample ID	FDU-15	FDU-15/Fe ₂ O ₃	CMK-8	CMK-8/Fe ₂ O ₃	OMCNW	OMCNW/Fe ₂ O ₃
V_{meso} (cm ³ g ⁻¹)	0.311	0.199	1.158	0.123	1.715	0.322
ΔV_{meso} %	-	20.7 %	-	80.5 %	-	59.0 %
Fe_2O_3 wt%		20.0 %		47.1 %		54.2 %

* All data are calculated from adsorption branches.

 V_{meso} : mesopore (2 nm < d < 50 nm) volume;

 ΔV_{meso} %: normalized mesopore volume change after Fe₂O₃ loading based on original carbon.

*Fe*₂*O*₃ *wt%*: Fe₂O₃ loading amount.