Porous ternary TiO₂/MnTiO₃@C hybrid microspheres as anode materials

with enhanced electrochemical performances

Shimei Guo,^{ac} Jiurong Liu,^{*a} Song Qiu,^a Wei Liu,^{*b}

Yiran Wang, ^d Nannan Wu,^a Jiang Guo,^d and Zhanhu Guo *^d

^a Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China

^b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

^c College of Physics and Electronic Engineering, Qujing Normal University, Qujing, Yunnan 655011, China

^d Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States

* E-mail: jrliu@sdu.edu.cn (J. L.); weiliu@sdu.edu.cn (W. L.); zguo10@utk.edu (Z. G.).

Tel.: +86-531-88390236 (J. L.); (865) 974-2933 (Z. G.).

Fig. S1 SEM and EDX mapping images (Mn, Ti, O) of TiO₂/MnTiO₃@C.

Fig. S2 EDS spectrum of TiO₂/MnTiO₃@C microspheres.

Fig. S3 XPS survey scan (a) and N 1s (b) spectra of TiO₂/MnTiO₃@C microspheres.

Table S1 Charge/discharge capacities (mA h g⁻¹) at 1st and 100th cycle at 100 mA g⁻¹, and discharge capacities of the 10th cycle at different current densities (mA g⁻¹).

Materials	Capacities (charge/ discharge)		Capacities of the 10th cycle at various densities					
	1st cycle	100th cycle	100	200	400	800	1600	100 (last)
TiO ₂	121/319	100/101	105	67	49	30	21	100
MnTiO ₃ @C	208/574	102/ 104	212	161	114	74	28	201
TiO ₂ @C	300/541	233/235	258	220	189	153	111	254
TiO ₂ /Mn ₃ O ₄	231/525	201/204		_	_	_	_	_
TiO ₂ /MnTiO ₃ @)C 310/579	304/308	260	237	201	154	106	324

Materials	Current	Last cycle	Reversible capacity	Capacity	Ref.
	density	number	(last cycle)	retention	
TiO ₂ @C	30 mA g ⁻¹	90	143 mA h g ⁻¹	86.6%	[1]
TiO ₂ /Co ₃ O ₄	50µA cm ⁻²	70	280 µAh cm ⁻²	60.2%	[2]
TiO ₂ -SiO ₂ @C	30 mA g ⁻¹	200	272 mA h g^{-1}	72.7%	[3]
MoO2-TiO2@CNT	33.6 mA g ⁻¹	100	249.5 mAh g ⁻¹	89.5%	[4]
TiO ₂ -MnO/C	100 mA g ⁻¹	100	377 mA h g^{-1}	93%	[5]
TiO ₂ /MnTiO ₃ @C	100 mA g ⁻¹	300	402.6 mAh g ⁻¹	130%	this work

Table S2 List of the recent researches on TiO₂-based anodes for lithium ion batteries

Supplementary Experimental Section

Synthesis of Carbon Coated MnTiO₃ (MnTiO₃@C) particles

In a typical synthesis, 0.989 g MnCl₂.4H₂O was dissolved in 25 mL absolute ethanol to form a transparent solution A, while 1.7 mL TBT was added to another 25 mL absolute ethanol to form a transparent solution B. Afterwards, solution B was mixed with solution A under magnetic stirring for 30 min. The light brown precipitate appeared immediately when 9 mL NH₃.H₂O was added dropwise to the mixing solution of solution A and B with vigorous stirring. After being stirred constantly for 2 hours at room temperature, the color of precipitate changed to dark brown. The resultant dark brown precipitate was centrifuged and washed using ethanol for five times, and then dried in an oven at 60 °C for 12 h. Ti-Mn oxides were obtained by annealing the asprepared precipitate at 500°C for 1 h. Carbon coating was conducted by mixing 1.5 g as-prepared Ti-Mn oxides with 0.5 mL pyrrole in a stainless steel autoclave, followed by carbonizing the mixed products at 550 °C for 5 h in 30 mL autoclaves made of 316 L stainless steel (without

lining). After the reaction, MnTiO₃@C particles were obtained (as shown in Fig.S4).

Fig. S4 XRD patterns of MnTiO₃@C

Notes and references

- 1 Z. Liu, J. Liu, J. Liu, L. Wang, G. Zhang, X. Sun, Phys. Chem. Chem. Phys., 2014, 16, 8808.
- 2 Y. Fan, N. Zhang, L. Zhang, H. Shao, J. Wang, J. Zhang, C. Cao, *Electrochim. Acta*, 2013, 94, 285.
- 3 J.-J. Zhang, Z. Wei, T. Huang, Z.-L. Liu, A.-S. Yu, J. Mater. Chem. A, 2013, 1, 7360.
- 4 D. Yuan, W. Yang, J. Ni, L. Gao, *Electrochim. Acta*, 2015, 163, 57.
- 5 N. Zhao, T. Li, L. Jiao, Y. Qi, H. Zhu, J. Liu, R. Fan, N. Lun, Y. Bai. J. Alloys Compd., 2015, 640, 15.