Electronic Supplementary Information

Earth-abundant and Nano-micro composite catalysts of Fe₃O₄@Reduced Graphene Oxide for Green and Economical Mesoscopic Photovoltaics with High Efficiencies up to 9%

Huawei Zhou^{*a*}, Jie Yin^{*b**}, Xianxi Zhang^{*a*}, Zhaojin Yang^{*b*}, Dongjie Li^{*b*}, Junhu Wang^{*c*}, Xin Liu^{*c*}, Changzi Jin^{*c*}, Tingli Ma^{*d*}

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

^b College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, Shandong, China.

^c Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^d Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan.

* Corresponding authors: yinjieily@163.com

Figure S1. SEM images of the as-prepared pure Fe₃O₄ agglomerated nanoparticles

Figure S2. SEM images of the as-prepared pure RGO

Figure S3. J-V curves of DSCs based on different thickness Fe₃O₄@RGO CEs under

AM1.5, 100 mW cm⁻² simulated illumination

Table S1. Photovoltaic parameters of the DSCs based on different thickness $Fe_3O_4@RGO$ CEs under AM1.5, 100 mW cm⁻² simulated illumination

Thickness(µm)	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE/%
4.8±0.5	0.78±0.02	10.71 ± 0.2	0.60±0.01	5.00±0.2
7.8±1	0.78±0.01	9.33±0.4	0.73 ± 0.02	5.33 ± 0.3
10.7±0.9	0.78±0.02	9.67±0.3	0.76±0.01	5.79±0.2
13.2 ± 0.5	0.75±0.03	13.08±0.5	0.69±0.01	6.77±0.5
16.4±1	0.79±0.02	11.66±0.1	0.76±0.01	7.02 ± 0.1
22.2±1.2	0.71±0.01	10.59±0.2	0.57±0.02	4.31±0.2