Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Supporting Information for

In Situ Preparation of Interconnected Networks Constructed by Flexible Graphene/Sn Sandwich Nanosheets for High-Performance Lithium-Ion Battery Anode

Jian Qin^a, Xiang Zhang^a, Naiqin Zhao^{a, b}, Chunsheng Shi^a, En-Zuo Liu^a, Jiajun Li^a, and

Chunnian He *^{, a, b}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and

Functional Materials, Tianjin University, Tianjin +86 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

* Corresponding author.

E-mail addresses: cnhe08@tju.edu.cn (C. He)

Figure S1. (a) and (b) SEM images of the complex of $SnCl_2-C_6H_8O_7/NaCl$ after freeze-drying process, suggesting that the NaCl particles uniformly coated with a thin layer of $SnCl_2-C_6H_8O_7$ complex were self-assembled into 3D structure during the freeze-drying process. (c) and (d) SEM images of the C-SnO₂ products before eliminating the NaCl, showing that the 3D self-assembly was well preserved after low-temperature calcination of the 3D $SnCl_2-C_6H_8O_7/NaCl$ and the 3D C-SnO₂ were actually formed on the surface of 3D NaCl self-assembly.

Figure S2. XRD patterns of (a) 3D SnO₂/C/SnO₂, (b) 3D SnO₂/C/SnO₂@C,

and (c) 3D G/Sn/G networks.

Figure S3. TGA of 3D SnO₂/C/SnO₂, 3D SnO₂/C/SnO₂@C, and 3D G/Sn/G networks. The Sn contents in the 3D G/Sn/G networks estimated from the thermal analysis are ca. 46.9 wt%. (The sample is annealed under air to oxidize Sn to SnO₂ and carbon to CO₂. On the basis of the final weight of SnO₂, the original content of Sn is calculated to be 46.9 wt %.) Comparing the weight loss of 3D SnO₂/C/SnO₂ with that of 3D SnO₂/C/SnO₂@C, it can be calculated that approximately 10.8 wt% carbon is added during the hydrothermal process.

Figure S4. HRTEM images of 3D G/Sn/G networks.

Figure S5. (a) STEM image of 3D G/Sn/G networks. (b) Carbon and (c) Sn element mapping images from area 1 in (a). d) SAED pattern of a typical Sn nanoparticle. e) EDX pattern from area 2 in (a).

Figure S6. (a) XRD pattern and (b) TGA of G/Sn sandwich nanosheets, showing that the Sn content is about 52 wt.%. (c) SEM and (d) TEM images of G/Sn sandwich nanosheets, indicating a sandwich-like structure with graphene layers closely binding to both sides of metallic Sn nanoparticles or nanosheets.

Figure S7. Raman spectra of (a) 3D G/Sn/G networks and (b) G/Sn sandwich nanosheets.

Figure S8. (a) Nitrogen adsorption–desorption isotherms of 3D G/Sn/G networks and G/Sn sandwich nanosheets, and (b) pore size distribution curve of 3D G/Sn/G networks.

Figure S9. Galvanostatic discharge-charge profiles of G/Sn sandwich nanosheets at a current density of 0.2 A g^{-1} .

Figure S10. Randles equivalent circuit for 3D G/Sn/G and G/Sn electrode/electrolyte interface. R_s is the electrolyte resistance and the resistance of the surface film formed on the electrodes. R_{ct} is charge-transfer resistance, Z_w is the Warburg impedance related to the diffusion of lithium ions into the bulk electrodes and CPE represents the constant phase element.

Step number	Number of cycle	Charge/discharge rate (C, $1C = 1 \text{ A}$ g^{-1})	Average reversible capacity of 3D G/Sn/G networks electrode (mAh g ⁻¹)	Average reversible capacity of G/Sn sandwich nanosheets electrode (mAh g ⁻¹)
1	20	0.2	1011	535
2	40	0.5	871	452
3	60	1	757	385
4	80	2	695	285
5	100	5	438	123
6	120	10	241	64
7	140	0.2	1098	541

Table S1. Comparison of rate performance of 3D G/Sn/G networks electrode with G/Sn sandwich nanosheets electrode on the basis of Figure 4d.

Table S2. Comparison of specific capacity and capacity retention at different rates for 3D G/Sn/G networks electrode with those of graphene/Sn sandwich nanosheets, surface-decorated graphene/Sn composites, and various Sn/C composites anodes reported.

Materials	Voltage range (V)	Current density (A g ⁻¹)	Cycle number	Specific capacity (mAh g ⁻¹)	Capacity retention (%)
3D G/Sn/G networks	0.005.2.0	2	500	665	95.5
[this work]	0.005-3.0	0.2	100	1010	97
Graphene/Sn sandwich nanosheets [S1]	0.005–2.0	0.05	60	590	69
Graphene/Sn sandwich nanosheets [S2]	0.002-3.0	1	30	501	86
	0.01.2.0	0.5	100	684.5	76
Graphene/Sn		1	100	639.7	71
	0.01-3.0	2	100	552.3	65
		5	100	359.7	51
graphene/Sn composite ^[S16]	0.005-2.5	0.2	50	255	20
graphene/Sn composite ^[S17]	0.01-3.0	0.05	30	490	55
graphene/Sn composite ^[S19]	0.01–3.0	0.5	200	552	87

graphene/Sn composite ^[S20]	0.02-1.2	0.1	100	500	80
Sn@CNT/graphene	0.005-3.0	2	100	560	82
composite ^[S3]		1	100	650	78.5
Sn@C/graphene composite ^[S4]	0.005–2.5	0.05	50	630	70
Sn@C/graphene composite ^[S12]	0.01–3.0	0.75	100	566	53
Sn/C composite [S6]	0.02-3.0	0.2	130	680	94
Sn/C composite [S7]	0.02-3.0	0.025	300	638	93
Sn/C composite [S15]	0.01-1.5	0.1	100	450	93
Sn/C composite [S18]	0.01-3.0	0.2	200	722	92
Sn@C@carbon fiber	0.01–3.0	0.25	200	737	88
Sn@mesoporous carbon nanowires [S9]	0.005–2.0	0.1	50	710	57
Sn@mesoporous carbon ^[S10]	0.005-2.0	0.05	100	560	86
Sn@carbon nanotubes ^[S11]	0.01–2.5	0.1	100	437	36
Sn@carbon nanotubes ^[S13]	0.01–2.5	1	100	335	62
	0.005–2.0	0.1	100	525	55
Sn@C nanowires ^[S14]		0.5	100	490	44
		1	100	486	39
		3	100	286	32
Tin-carbon/silica composite ^[85]	0.0–2.5	0.3	100	440	95
Sn@CNT composite [S22]	0.005-3	0.1	80	473.9	90.1
SnQDs@N-CNF	0.02-3	0.2	500	685	74
composite ^[S23]		0.4	200	508	67
Sn-Co-CNT	0.005-3	0.099	200	811	91.1
composite ^[S24]		0.99	200	612	85.7
$TiO_2 - Sn/C$	0.01-3	0.335	160	459	99.9
nanowire ^[825]		3.35	100	150	84.8
SnNPs @CNTs composite ^[S26]	0.005-2	0.1	140	648	83.7
SnNPs@h-CS composite ^[S27]	0.005-3	0.166	100	550	68.75
Sn NP/CNF hybrid network	0.01-3	0.2	200	460	57.93

composite ^[S28]					
Sn-PCNF composite ^[S29]	0.01-3	0.8	200	774	93
RGO/Sn composite ^[S30]	0.01-2	0.099	50	858	97
Sn/graphene nanocomposite ^[S31]	0.01-3	0.055	100	508	63.9

Table S3. Kinetic parameters of the electrodes of 3D G/Sn/G networks and G/Sn sandwich nanosheets after the rate capability test.

Samples	$R_{ m f}(\Omega)$	$R_{ m ct}(\Omega)$
3D G/Sn/G	27.79	66.03
G/Sn	34.91	141.7

References

- [S1] B. Luo, B. Wang, X. L. Li, Y. Y. Jia, M. H. Liang, L. J. Zhi, Adv. Mater., 2012, 24, 3538–3543.
- [S2] L. Ji, Z. Tan, T. Kuykendall, E. J. An, Y. Fu, V. Battaglia, Y. Zhang, *Energy Environ. Sci.*, 2011, 4, 3611–3616.
- [S3] Y. Zou, Y. Wang, ACS Nano, 2011, 5, 8108-8114.
- [S4] B. Luo, B. Wang, M. H. Liang, J. Ning, X. L. Li, L. J. Zhi, Adv. Mater., 2012, 24, 1405– 1409.
- [S5] J. K. Hwang, S. H. Woo, J. M. Shim, C. S. Jo, K. T. Lee, J. Lee, ACS Nano, 2013, 7, 1036–1044.
- [S6] Y. H. Xu, Q. Liu, Y. J. Zhu, Y. H. Liu, A. Langrock, M. R. Zachariah, C. S. Wang, Nano Lett., 2013, 13, 470–474.
- [S7] X. F. Li, A. Dhanabalan, L. Gu, C. L. Wang, Adv. Energy Mater., 2012, 2, 238–244.
- [S8] Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P.A. Van Aken, J. Maier, Angew. Chem. Int. Ed., 2009, 48, 6485–6489.

- [S9] Y. C. Qiu, K. Y. Yan, S. H. Yang, Chem. Commun., 2010, 46, 8359.
- [S10] Y. G. Wang, B. Li, C. L. Zhang, H. Tao, S. F. Kang, S. Jiang, X. Li, J. Power Sources, 2012, 219, 89.
- [S11] X. Y. Hou, H. Jiang, Y. J. Hu, Y. F. Li, J. C. Huo, C. Z. Li, ACS Appl. Mater. Interfaces, 2013, 5, 6672.
- [S12] D. N. Wang, X. F. Li, J. L. Yang, J. J. Wang, D. S. Geng, R. Y. Li, M. Cai, T. K. Sham, X. L. Sun, Phys. Chem. Chem. Phys., 2013, 15, 3535.
- [S13] H. K. Zhang, H. H. Song, X. H. Chen, J. S. Zhou, J. Phys. Chem. C, 2012, 116, 22774.
- [S14] K. C. Hsu, C. E. Liu, P. C. Chen, C. Y. Lee, H. T. Chiu, J. Mater. Chem., 2012, 22, 21533.
- [S15] J. Hassoun, G. Derrien, S. Panero, B. Scrosati, Adv. Mater., 2008, 20, 3169.
- [S16] Z. H. Wen, S. M. Cui, H. J. Kim, S. Mao, K. H. Yu, G. H. Lu, H. H. Pu, O. Mao, J. H. Chen, J. Mater. Chem., 2012, 22, 3300.
- [S17] W. B. Yue, S. Yang, Y. Ren, X. J. Yang, *Electrochim. Acta*, 2013, 92, 412.
- [S18] Z. Q. Zhu, S. W. Wang, J. Du, Q. Jin, T. R. Zhang, F. Y. Cheng, J. Chen, Nano Lett., 2014, 14, 153.
- [S19] J. S. Zhu, D. L. Wang, L. B. Cao, T.F. Liu, J. Mater. Chem. A, 2014, 2, 12918.
- [S20] F. R. Beck, R. Epur, D. Hong, A. Manivannan, P.N. Kumta, *Electrochim. Acta*, 2014, 127, 299.
- [S21] X. Y. Zhou, Y. L. Zou, J. Yang, J. Power Sources, 2014, 253, 287-295.
- [S22] Y. Wang, M. Wu, Z. Jiao, J. Y. Lee, Chem. Mater., 2009, 21, 3210–3215.
- [S23] G. H. Zhang, J. Zhu, W. Zeng, S. C. Hou, F. L. Gong, F. Li, C. C. Li, H. G. Duan, Nano Energy, 2014, 9, 61–70.
- [S24] Y. Gu, F. D. Wu, Y. Wang, Adv. Funct. Mater., 2013, 23, 893-899.
- [S25] J. Y. Liao, A. Manthiram, Adv. Energy Mater., 2014, 4, 1400403.

- [S26] Y. Yu, L. Gu, C. Zhu, P.A. Van Aken, J. Maier, J. Am. Chem. Soc., 2009, 131, 15984– 15985.
- [S27] W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan, Adv. Mater., 2008, 20, 1160–1165.
- [S28] J. Wang, W. L. Song, Z. Y. Wang, L. Z. Fan, Y. F. Zhang, *Electrochim. Acta*, 2015, 153, 468–475.
- [S29] Z. Shen, Y. Hu, Y. L. Chen, X. W. Zhang, K. H. Wang, R. Z. Chen, J. Power Sources, 2015, 278, 660-667.
- [S30] C. Nithya, S. Gopukumar, CHEMSUSCHEM, 2013, 6, 898–904.
- [S31] G. X. Wang, B. Wang, X. H. Wang, J. Park, S. X. Dou, H. Ahn, K. Kim, J. Mater. Chem., 2009, 19, 8378–8384.