Supporting Information

"CuNb_{1-x}Ta_xO₃ ($x \le 0.25$) Solid Solution: Impact of Ta(V) Substitution and Cu(I) Deficiency on its Structure, Photocatalytic, and Photoelectrochemical Properties"

Brandon Zoellner, ^a Sean Stuart, ^b Ching-Chang Chung, ^c Daniel B. Dougherty, ^b Jacob Jones, ^c and Paul A. Maggard*, ^a

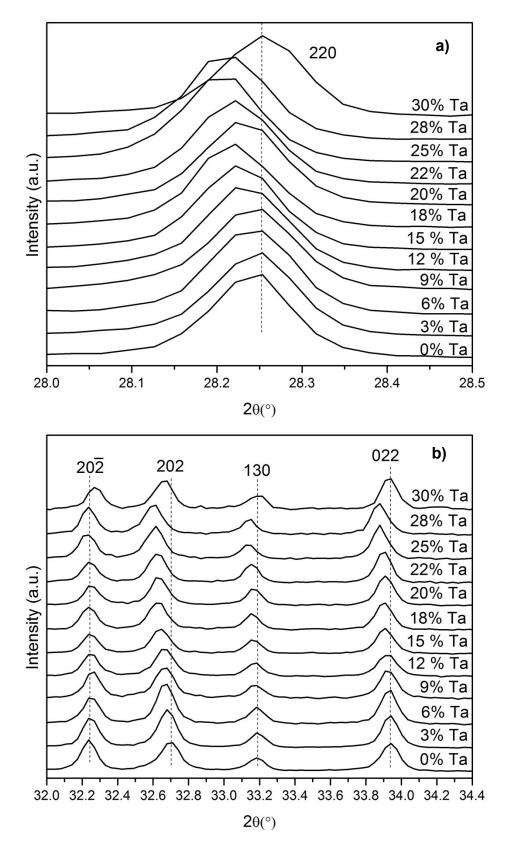
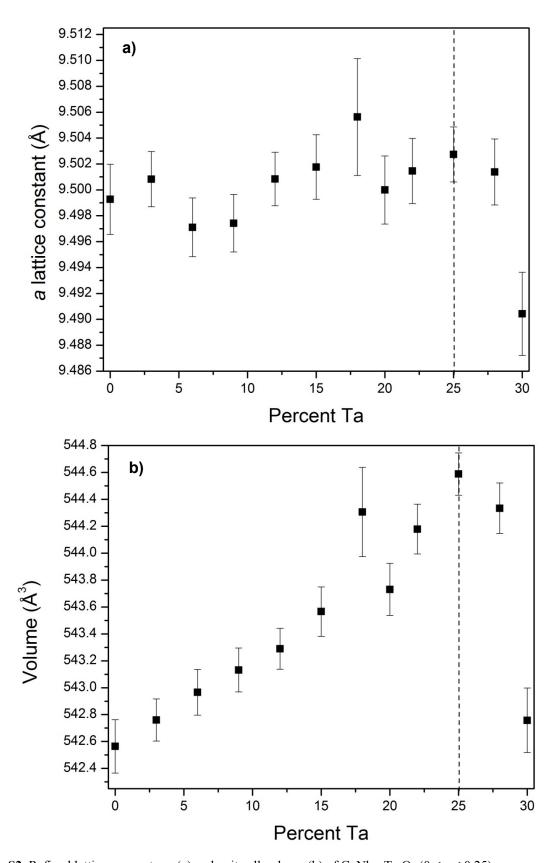
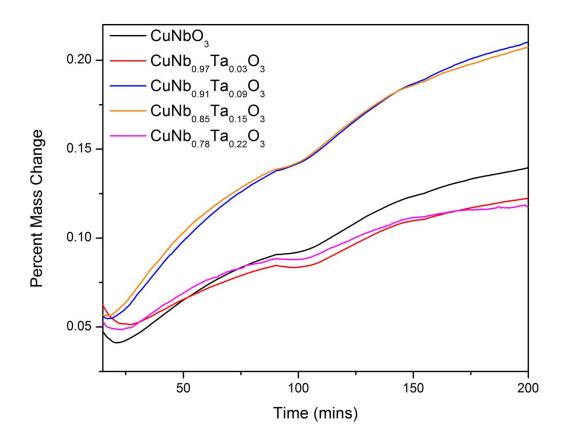
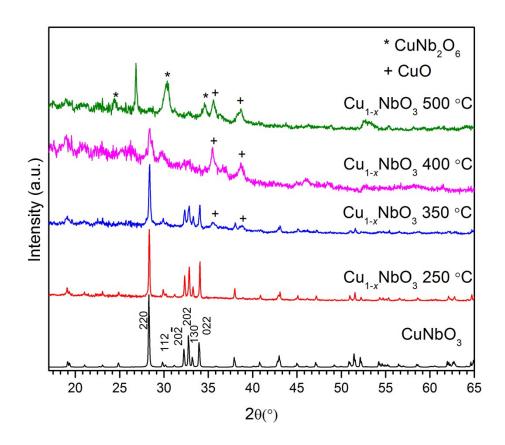

^aDepartment of Chemistry, ^bDepartment of Physics, and ^cDepartment of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-8204, United States

Table S1. An example listing of the Miller (hkl) indices used for lattice parameter refinements of CuNb_{1-x}Ta_xO₃ in LATCON.


Millow Indiana (hkh	Calculated 20 (9)
Miller Indices (hkl)	Calculated 20 (°)
001	13.075
110	14.030
11-1	19.134
111	19.311
021	24.846
220	28.276
-112	29.832
310	30.153
-221	31.142
20-2	32.258
202	32.693
130	33.186
022	33.935
400	37.884
312	40.708
040	42.823
330	42.985
-331	44.998
240	47.096
-332	50.885
-422	51.465
422	52.059
004	54.182
-224	61.968
60-2	64.644
-134	64.903
532	65.753

 $\textbf{Table S2.} \ Refined \ atomic \ positions, \ fractional \ occupancies, \ and \ U_{iso} \ values \ for \ the \ atomic \ positions \ in \ Cu_{1-x}NbO_3.$


Atom	X	y	Z	Site Occupancy	U_{iso}
Cu 1	0.00000	0.1702(3)	0.50000	0.983	0.0212(15)
Cu 2	0.7671(4)	0.00000	0.2869(6)	0.948	0.0217(16)
Nb 1	0.00000	0.20067(25)	0.00000	1.000	0.0040(8)
Nb 2	0.25060(28)	0.00000	0.2340(4)	1.00	0.0185(11)
O 1	0.3640(12)	0.1550(11)	0.1037(17)	1.00	0.016(3)
O 2	0.0764(10)	0.8265(10)	0.2557(16)	1.00	0.012(4)
O 3	0.1237(13)	0.00000	0.9601(22)	1.00	0.010(6)
O 4	0.3404(14)	0.00000	0.4939(22)	1.00	0.005(5)


Figure S1. Powder X-ray diffraction of $CuNb_{1-x}Ta_xO_3$ with the 220 peak (a) and the 202, 130, and 022 peaks (b) shifting to lower 20 with the increasing Ta(V) percentage.

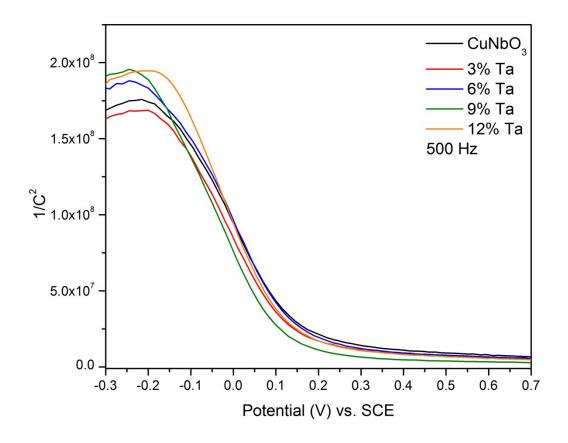

Figure S2. Refined lattice parameter a (a) and unit cell volume (b) of CuNb_{1-x}Ta_xO₃ ($0 \le x \le 0.25$).

Figure S3. Weight gain versus time when heating $CuNb_{1-x}Ta_xO_3$ (x = 0, 0.03, 0.09, 0.15, 0.22) at 250 °C for 3 hrs in air.

Figure S4. Powder X-ray diffraction of $Cu_{1-x}NbO_3$ films heated at 250, 350, 400, and 500 °C for 3 hours. New peaks corresponding to CuO and $CuNb_2O_6$ were identified at temperatures of 350 °C and higher.

Figure S5. Mott-Schottky measurements of $CuNb_{1-x}Ta_xO_3$ (x = 0, 0.03, 0.06, 0.09, and 0.12) with a fixed AC frequency of 500 Hz.

Mott-Schottky Analysis and Equations

Acceptor Density (N_A)

The charge acceptor density (N_A) within the metal oxide is calculated from the equation below.

$$\frac{2}{N_{\rm A} = e_{\mathcal{E}_{r}\mathcal{E}_{0}}A^{2}m}$$

The slope of the linear potion of each plot (m) is determined and used in the equation. The value of the dielectric for all the samples is approximated to 35 F/m and the area of the films studied was \sim 4 cm².

Energy of the valence band (E_v)

The final calculation for the energy position of the valence band is done with the equation shown below.

$$E_v = E_{fb} + kT \ln(N_A/N_v)$$

In the equation, the effective density of states for the valence band (N_v) is approximated to 10^{19} cm⁻³.