Supplementary Information for

Preparation of Microvillus-like Nitrogen-Doped Carbon Nanotubes as the

Cathode of Microbial Fuel Cell

Yan-Rong He^{a, b}, Feng Du^b, Yu-Xi Huang^a, Li-Ming Dai^{b,*} Wen-Wei Li^a, Han-Qing

Yu^{a,*}

^a CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry,

University of Science & Technology of China, Hefei, 230026, China

^b Department of Municipal Engineering, Hefei University of Technology, Hefei,

230009, China

Experimental Section

Preparation of electrodes: N-CNTs were grown on carbon cloth by using Ferrocene method with a dual-zone tube furnace, as described previously.¹ Pyridine containing 1 wt% ferrocene was fed into the preheater (200 °C) by an injection syringe pump at a feed rate of 25 mL h⁻¹. Then, the reaction gas volatilized from the preheater was blown into the reactor by a purging gas mixture of H₂ (50 mL min⁻¹) and argon (100 mL min⁻¹). The carbon cloth was put in the middle of the reactor to be heated up to 750-850 °C for 10-15 min. Then, the furnace was cooled down to room temperature.

Chemical analysis: The morphology of the electrode samples was examined by scanning electron microscopy (SEM, JSM-7001F, JEOL Inc., USA). The Raman spectra were measured under ambient conditions using a micro-Raman spectroscopy system (Renishaw Co., UK) with a 514.5 nm argon-ion laser. The surface composition of the N-CNTs-carbon cloth was analyzed using an X-ray photoelectron spectroscopy (XPS) (ESCALAB 250, VG Instrument Ltd., UK) and curve-fitting software (XPSPEAK v4.1).

The electrochemical behaviors of the N-CNTs-CC and Pt/C-CC were examined using an electrochemical workstation (CHI 760E, ChenHua Instruments Co., China). All the electrochemical experiments were conducted in phosphate buffer solution (PBS, 50 mM, pH = 7.0) at ambient temperature (25 °C). The reference electrode was Ag/AgCl (saturated KCl, 0.197 V vs. SHE) and a Pt wire was used as counter electrode. Both the reference and counter electrodes were fixed with a 0.5 cm spacing from the working electrode. Tafel plots (log |current density|, mA cm⁻² versus overpotential, V) were recorded by sweeping the overpotential (η) from 0 mV to 100 mV at 1 mV s⁻¹, where $\eta = 0$ is the open circuit potential (OCP) of the cathode vs. the reference electrode. Cyclic voltammetry (CV) analysis was performed from 0.4 to -0.5 V with a scan rate of 1 mV s⁻¹.

MFC configuration and operation: Air-cathode cylindrical-shaped MFCs with a working volume of 110 mL and an electrode spacing of 3 cm were used (Fig. S1). Carbon cloth (3×3 cm², CC6P20, Fuel cell Earth LLC Co., USA) was adopted as the anode. For the MFC start-up, the CC (30 wt% wet proofing, Fuel cell Earth LLC Co., USA) coated with Pt of 0.05 mg cm⁻² (GEL, GEFC Co., USA) was used as cathode as described previously. Bio-anodes were enriched under the same conditions before the experiments. After obtaining a parallel electricity generation the cathodes were replaced by the N-CNTs-CC ($2 \times 2 \text{ cm}^2$), and a new Pt/C-CC with the same size was used for comparison. Fed-batch operation mode was adopted for the MFCs. The anode chambers of MFCs were filled with 100 mL acetate-laden synthetic wastewater, containing 310 mg NH₄Cl, 130 mg KCl; 10 mg CaCl₂; 20 mg MgCl₂·6H₂O; 2 mg NaCl; 5 mg FeCl₂; 1 mg CoCl₂·2H₂O; 1 mg MnCl₂·4H₂O; 0.5 mg AlCl₃; 3 mg (NH₄)₆Mo₇O₂₄; 1 mg H₃BO₃; 0.1 mg NiCl₂·6H₂O; 1 mg CuSO₄·5H₂O; 1 mg ZnCl₂; 1 g CH₃COONa \cdot 3H₂O as substrate, in 1 L of 50 mM Phosphate buffer, pH = 7.0. The output voltage over a 1000 Ω resistor was automatically collected every hour using a

data acquisition system (2701, Keithley Instruments Inc., USA). The power densities of the cells were obtained from polarization curves by varying the external resistor from 10 Ω to 10000 Ω as the performance of MFC approached a steady state. The power density was calculated according to $P = E^2/(VR)$, where *E* is the external voltage, and *V* is the cell volume, and *R* is the external resistance.

The EIS analysis was conducted over a frequency range of 100 kHz to 0.01 Hz with the AC signal amplitude of 5 mV. For each measurement, the initial potential was set at the OCP. The anode and cathode potentials were detected for the MFC with a 1000 Ω external resistor versus Ag/AgCl reference electrode.

References

 G. L. Zang, G. P. Sheng, Z. H. Tong, X. W. Liu, S. X. Teng, W. W. Li and H.-Q. Yu, *Environ. Sci. Technol.*, 2010, 44, 2715-2720.

- 1. MFC anode chamber, 110 mL
- 2. MFC anode, the apparent surface area was 3×3 cm²
- 3. Proton exchange membrane
- 4. Air cathode, the apparent surface area was $2 \times 2 \text{ cm}^2$
- Electrode spacing was 3 cm

Fig. S1 Schematic of the MFC setup