Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

An Aqueous, Organic Dye Derivatized SnO₂/TiO₂ Core/Shell Photoanode

Kyung-Ryang Wee, Benjamin D. Sherman, M. Kyle Brennaman, Matthew V. Sheridan, Animesh Nayak,

Leila Alibabaei, and Thomas J. Meyer*

Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North

Carolina 27599, United States

Contents

Figure S1. CV trace of TiO ₂ -[P-A- π- D] film in acetonitrile	S2
Figure S2. CV traces of TiO_2 -[P-A-π-D] film in pH 7	S3
Figure S3. 50 Cycles of CVs for TiO_2 -[P-A-π-D] film in pH 7	S 3
Figure S4-5. LSV trace of $TiO_2 -[P-A-\pi-D]$ and $FTO SnO_2/TiO_2 -[P-A-\pi-D]$ in pH 7	S4
Figure S6. Absorption changes of SnO_2/TiO_2 -[P-A- π - D] film in pH 7 under light illumination	S5
Figure S7. IPCE data for SnO_2/TiO_2 -[P-A- π -D] electrodes in pH 7 with 20 mM H ₂ Q	S 6
Figure S8. CV trace for co-loading of [P-A-π-D] and [Ru(bda)(pyP) ₂] at FTO in pH 7	S7
Figure S9. O ₂ detection for SnO ₂ /TiO ₂ -[P-A-π-D] photoelectrode in 0.1 M phosphate buffer	S 8
Figure S10-S13. ¹ H, ¹³ C, and ³¹ P -NMR spectra for P-A-π-D and Ru(bda)(pyP) ₂	S9-S14
Figure S14. UV-vis absorbance and CV trace of P-A-π-D	S15
Figure S15. Adsorption isotherms of P-A- π -D on TiO ₂	S16
Figure S16. LSV trace of TiO ₂ -[P-A-π-D]-Ru(bda)(pyP) ₂ and SnO ₂ /TiO ₂ -[P-A-π-D]-Ru(bda)(pyP) ₂ in pH 7	S17

Figure S1. CV trace of $FTO|TiO_2|$ -[**P-A-\pi-D**] film in 0.1 M tetrabutylammonium perchlorate (TBAP) containing acetonitrile solvent at 20 mV/s scan rate with 50 cycles of CVs.

Figure S2. CV traces of FTO $|TiO_2|$ -[**P-A-\pi-D**] film (a) from 0.0 to 1.1 V and (b) from 0.0 to 1.4 V in pH 7 phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ at 20 mV/s scan rate.

Figure S3. 50 Cycles of CVs for $FTO|TiO_2|-[P-A-\pi-D]$ film in pH 7 phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ at 50 mV/s scan rate.

Figure S4. Linear scan voltammetric (LSV) trace of $FTO|TiO_2|$ -[**P-A-\pi-D**] electrode in pH 7 phosphate buffer solution vs. SCE containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ under dark and light (100 mWcm⁻², 400 nm cut-off filter) (a) w/o and (b) w/ 20 mM of hydroquinone (H₂Q), scan rate = 20 mV/s.

Figure S5. LSV trace of FTO $|SnO_2/TiO_2|$ -[**P-A-\pi-D**] electrode vs. SCE in pH 7 phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ under dark and light (100 mWcm⁻², 400 nm cut-off filter) in the present of 20 mM of hydroquinone (H₂Q), scan rate = 20 mV/s.

Figure S6. UV-Visible absorption changes of $FTO|SnO_2/TiO_2|$ -[**P-A-\pi-D**] film in pH 7 phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ under light illumination (white light, 100 mWcm⁻², 400 nm cut-off filter).

Figure S7. Incident photon to current efficiency (IPCE) data for $FTO|SnO_2/TiO_2(3nm)|$ -[**P-A-\pi-D**] electrodes in pH 7, 0.1M phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ with 20 mM H₂Q with an applied bias of 0.2 V versus SCE.

Figure S8. CV trace vs. AgCl/Ag for -[Ru(bda)(pyP)₂] (dotted gray), -[**P-A-\pi-D**] (gray), and 1:5 -[**P-A-\pi-D**+Ru(bda)(pyP)₂] (black) on 1 cm² FTO electrodes in pH 7, 0.1M phosphate, 0.5M NaClO₄, v = 50 mV/s.

Figure S9. Upper: current–time trace (60–600 s) at light illuminated (100 mWcm⁻², 400 nm cut-off filter) FTO|SnO₂/TiO₂|-[**P-A-\pi-D**] in 0.1 M phosphate buffer at pH 7 with an applied bias of 0.2 V versus SCE. Lower: current trace measured at an FTO electrode ca.1 mm from FTO|SnO₂/TiO₂|-[**P-A-\pi-D**] electrode at an applied bias of -0.85 V versus SCE concurrently with the photoelectrochemical trace.

Figure S10-1. ¹H-NMR spectrum of OrgD-POEt in CDCl₃ solvent.

Figure S10-2. ¹³C-NMR spectrum of OrgD-POEt in CDCl₃ solvent.

Figure S11-1. ¹H-NMR spectrum of **P-A-π-D** in DMSO solvent.

Figure S11-2. ¹³C-NMR spectrum of **P-A-π-D** in DMSO solvent.

Figure S11-3. ³¹P-NMR spectrum of **P-A-π-D** in DMSO solvent.

Figure S12-1. ¹H-NMR spectrum of Ru(bda)(pyPO₃Et₂)₂ in MeOD solvent.

Figure S12-2. ¹P-NMR spectrum of Ru(bda)(pyPO₃Et₂)₂ in MeOD solvent.

Figure S13-1. ¹H-NMR spectrum of Ru(bda)(pyP)₂ in DMSO solvent.

Figure S13-2. ¹P-NMR spectrum of Ru(bda)(pyP)₂ in DMSO solvent.

Figure S14. (a) UV-vis absorbance of **P-A-\pi-D** in CH₂Cl₂ solvent. (b) CV trace of **P-A-\pi-D** in 0.1 M tetrabutylammonium perchlorate (TBAP) containing CH₂Cl₂ solvent at 20 mV/s scan rate with 50 cycles of CVs.

Figure S15. Adsorption isotherms of **P-A-\pi-D** on TiO₂ loaded from 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 3.0, and 4.0 mM solutions in CH₂Cl₂. The red lines are the best fits to the Langmuir isotherm equation.

Figure S16. LSV trace of (a) $FTO|TiO_2|$ -[**P-A**- π -**D**]-[Ru(bda)(pyP)₂] and (b) $FTO|SnO_2/TiO_2|$ -[**P-A**- π -**D**]-[Ru(bda)(pyP)₂] (loading ratio, **P-A**- π -**D** : Ru(bda)(pyP)₂ = 5 : 1) electrode in pH 7 phosphate buffer solution containing 0.1 M H₂PO₄^{-/} HPO₄²⁻, 0.5 M KNO₃ under dark and light (100 mWcm⁻², 400 nm cut-off filter), scan rate = 20 mV/s.