Supporting Information

MoS_x Supported Hematite with Enhanced Photoelectrochemical Performance

Hyo-Jin Ahn, Ki-Yong Yoon, Myung-Jun Kwak, Jung-Soo Lee, Pradheep Thiyagarajan and Ji-Hyun Jang*

School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, 689-798, UNIST, Korea.

Experimental section

Chemicals used

Iron (III) chloride hexahydrate (FeCl₃•6H₂O, Kanto chemical, > 97.0%), Titanium(III) chloride solution (TiCl₃, Sigma Aldrich, >12%), Ammonium tetrathiomolybdate ((NH₄)MoS₄, Sigma Aldrich, 99.97%), N,N-Dimethylformamide (DMF, Junsei, 99.5%), Sodium Hydroxide (NaOH, Samchun, extra pure), Ethanol (SK chemical, > 95%), Methylene blue (Sigma-Aldrich, >82%). All chemicals were used without further purification.

Preparation of Ti-Fe₂O₃ and MoSx/Ti-Fe₂O₃

For the synthesis of Ti doped Fe₂O₃ (Ti-Fe₂O₃), the FTO substrate was immersed in a mixture of 2.4 μ l of TiCl₃ and 40 ml of FeCl₃•6H₂O and kept in a convection oven at 100 °C with a ramp rate of 1 °C/min for 4 hrs. The samples were washed with DI water and EtOH. Finally β-FeOOH was annealed at 550 °C for 1 h and 800 °C for 20 min in the furnace.

To fabricate precursors of MoS_x , 0.1 wt% of $(NH_4)MoS_4$ in DMF was diluted to the proper concentration. The 10 μ wt%, 100 μ wt% and 1000 μ wt% of $(NH_4)MoS_4$ solution was drop-casted on Ti-Fe₂O₃ for 10-MoS_x/Ti-Fe₂O₃, 100-MoS_x/Ti-Fe₂O₃ and 1000-MoS_x/Ti-Fe₂O₃,

respectively, and annealing at 100 °C for 10 min. To fabricate $MoS_x/Ti-Fe_2O_3$, the (NH₄)MoS₄ treated Ti-Fe₂O₃ was placed in a quartz tube with an outer diameter of 2 inch, heated at 700 °C under Ar (200 sccm) atmosphere with sulfur powder in alumina boat for 1 h.

Characterization.

The structures was examined by SEM (S-4800 Hitachi, 10kV), TEM (JEM-2100, 200kV). The XRD data were obtained using a Rigaku Co. High Power X-Ray Diffractometer D/MAZX 2500V/PC from 20° to 80°. The XPS data were obtained using k-alpha (Thermo Fisher, UK), The PL data were measured using a Cary Eclipse (Agilent, USA) at 400 nm excitation, The UV-visible extinction spectra were measured using a Cary-100 corns spectrophotometer (Varian).

Photoelectrochemical measurement

The PEC performance of the Ti-Fe₂O₃ and MoS_x/Ti-Fe₂O₃ electrodes was explored in a threecell electrode system under front-side illumination of AM 1.5 G. An Ag/AgCl electrode and a Pt mesh were used as reference and counter electrodes, respectively. A solution of 1 M NaOH was used as an electrolyte. The exposed area of the working electrode was an exact value of 0.287 cm². Photocurrent stability tests were carried out by measuring the photocurrent produced under chopped light irradiation (light/dark cycles of 30 s) at a bias of 1.50 V versus RHE.). IPCE measurements were also conducted using an EQE system (Model QEX7) by PV Measurements Inc. (Boulder, Colorado) with 3 electrode system. Electrochemical impedance spectroscopy (EIS) was carried out at a frequency range from 100 kHz to 0.1 Hz using a potentiostat at 1.50 V_{RHE}. The photodegradation of methylene blue (MB) was measured by separately immersing Ti-Fe₂O₃ and MoS_x/Ti-Fe₂O₃ in 100ml of the MB solution (50mg/l in water) under illumination. After the given exposure period, the absorbance change of MB was tracked by a UV-visible spectrophotometer to compare the photocatalytic activity.

Figure S1. XRD patterns of the Ti-Fe₂O₃ and MoS_x/Ti -Fe₂O₃ on the glass substrate.

Figure S2. SEM images of (a) $Ti-Fe_2O_3$, (b) $10-MoS_x/Ti-Fe_2O_3$, (c) $100-MoS_x/Ti-Fe_2O_3$ and (d) $1000-MoS_x/Ti-Fe_2O_3$.

Figure S3. The cross-sectional SEM images of (a) Ti-FeOOH, (b) Ti-Fe₂O₃, (c) 10-MoSx/Ti-Fe₂O₃ and (d) 1000-MoSx/Ti-Fe₂O₃.

Figure S4. The XPS spectra of (a) Mo 3d and (b) S 2P. The sample was prepared from $(NH_4)_2MoS_4/Ti-Fe_2O_3$ precursors without sulfur powder.

It is known that MoS_x is easily converted to the MoO_3 with the oxygen components at high temperature.¹ The annealing of MoS_x without sulfur powder treatment resulted in the creation of MoO_3 as shown in XPS data.

Figure S5. (a) SEM image and EDX mapping of (b) Mo, (c) S, (d) Fe, (e) O and (f) Ti in $MoS_x/Ti-Fe_2O_3$.

Figure S6. XPS of Ti ions of Ti-Fe₂O₃.

Figure S7. The valence band maximum (VBM) of (a) Ti-Fe₂O₃ (1.65eV) and (b) $MoS_x/Ti-Fe_2O_3$ (0.78 eV).

Figure S8. Mott-Schottky plots of MoSx on the FTO glass in 0.5M NaSO₄ electrolyte.

Figure S9. The UV-Vis spectrum of MoS_x on FTO glass.

The absorption at 450 nm is assigned to a direct transition peak from the deep valence band to the conduction band of MoS_2 . The peaks at 610 and 670 nm are attributed to the direct excitonic transitions at the K point of the Brillouin zone.¹⁻³

1. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. ACS Nano 2014, 8, (5), 5297-5303.

2. Frey, G. L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. *Physical Review B* **1998**, 57, (11), 6666-6671.

3. Posudievsky, O. Y.; Khazieieva, O. A.; Cherepanov, V. V.; Dovbeshko, G. I.; Shkavro, A.

G.; Koshechko, V. G.; Pokhodenko, V. D. J. Mater. Chem. C 2013, 1, (39), 6411-6415.

Figure S10. I-V curve of α -Fe2O3, Ti-Fe₂O₃ and 10-MoS_x/Ti-Fe₂O₃.

Figure S11. Dark current density of Ti-Fe $_2O_3$ and 10-MoSx/ Ti-Fe $_2O_3$

Figure S11. (a) The EIS data of $Ti-Fe_2O_3$ and $10-MoS_x/Ti-Fe_2O_3$ at 1.23 V_{RHE} . (b) The photodegradation of methylene blue by $Ti-Fe_2O_3$ and $10-MoS_x/Ti-Fe_2O_3$ without applying voltage under AM 1.5.

(R·Ω cm²)	Rs	R ₁	R ₂
(C / F)		C 1	C ₂
Ti-Fe ₂ O ₃	14.2	110	380
	•	7.89e⁻⁵	9.03e⁻⁵
10-MoS _x /Ti-Fe ₂ O ₃	14.36	95.6	125
	•	9.86e ⁻⁵	6.10e ⁻⁴
100-MoS _x /Ti-Fe ₂ O ₃	14.56	100.5	175
		7.99e ⁻⁵	4.36e ⁻⁴
1000-MoS _x /Ti-Fe ₂ O ₃	15.05	280.08	784.6
	•	5.64e ⁻⁷	1.82e⁻⁵

Table S1.Electrochemical parameters of photoanodes from equivalent circuit model.

1. Naguman, P. N.; Karimova, L. M.; Tokaeva, Z. M.; Shinbaev, U. B. *Russ. J. Non-ferrous Metals* **2009**, 50, (4), 330-334.