Supporting information

Lithium storage of highly conductive Cu₃Ge boosted Ge/graphene

aerogel

Chuanjian Zhang,^a Fenglian Chai,^{ab} Lin Fu,^a Pu Hu,^a Shuping Pang,^a and Guanglei Cui*^a

a Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, PR China

b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao, 266042, PR China

E-mail:cuigl@qibebt.ac.cn

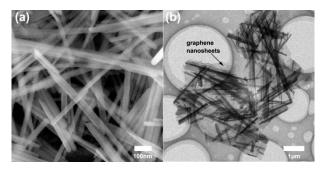


Fig. S1 (a) SEM images of CuGeO₃ NWs, (b) TEM image of CuGeO₃ NWs/G hydrogel.

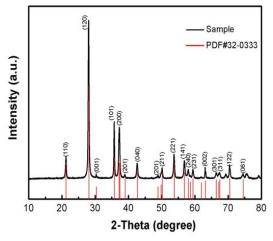
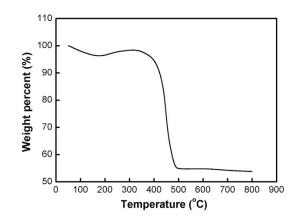



Fig. S2 XRD pattern of CuGeO₃ NWs/G hydrogel.

Fig. S3 TG curve of Cu₃Ge/Ge@G aerogel. The result shows that the composite contains 39.95 wt% Cu₃Ge/Ge and 60.05 wt% graphene based on the weight loss upon graphene combustion and that Cu₃Ge/Ge is fully oxidized to CuGeO₃ (CuO-GeO₂) in air. The weight loss that commences around 400 °C is caused by the graphene combustion reaction.

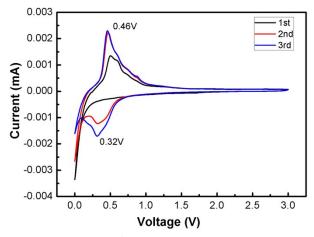
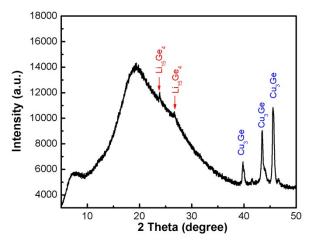



Fig. S4 Cyclic voltammograms of Cu₃Ge/Ge@G aerogel at a scanning rate of 0.2 mV s⁻¹ from 0.005 to 3 V versus Li/Li⁺

Fig. S5 Ex-situ XRD pattern of Cu₃Ge/Ge@G aerogel when lithiated to 5 mV. The hump located around 20 degree is associated to the signal of Kapton film for the test setup.

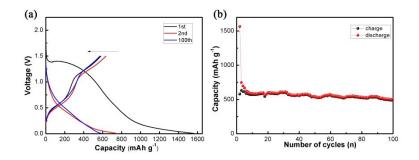


Fig. S6 Voltage profile (a) and cycling performance (b) of bare $CuGeO_3$ NWs a current density of 0.1 C.

Equivalent circuit	Sample	R_s/Ω	R_1/Ω	R_{ct}/Ω
Rs RI Rct WI	Cu₃Ge/Ge@G as-assembled	6.2	16.2	98.7
	Cu ₃ Ge/Ge@G after 100 cycles	6.46	4.384	3.6
	Cu₃Ge/Ge as-assembled	9.285	18.95	140.2
	Cu₃Ge/Ge after 100 cycles	8.762	232	641.2

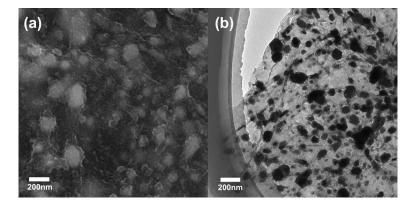


Fig. S7 SEM (a) and TEM (b) images of $Cu_3Ge/Ge@G$ aerogel after cycled for 100 cycles at 0.1 C.