CdS-Phenanthroline Derivative Hybrid Cathode Interlayers for High Performance Inverted Organic Solar Cells

Xiaohui Liu,^{†,a,b} Yulei Wu,^{†,a} Xiaodong Li,^{a,b} Wenjun Zhang,^a Lixiao Zhao,^a Hai-Qiao Wang^{*,a} and Junfeng Fang^{*,a}

^a Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

[†] Xiaohui Liu and Yulei Wu contributed equally to this work.

Email: hqwang@nimte.ac.cn, fangjf@nimte.ac.cn

Fig. S1 XPS spectra of (a) Cd3d peak and N1s peak of the precursor $Cd(S_2COEt)_2$ ·(BCP), (b) Cd3d peak and N1s peak of the CdS-BCP decomposed from $Cd(S_2COEt)_2$ ·(BCP), (c) Cd3d peak of CdS decomposed from $Cd(S_2COEt)_2$ ·(Pyridine)₂.

Fig. S2 Current-voltage characteristics of OSCs incorporating CdS-BCP as cathode interlayer under AM 1.5G irradiation. The CdS-BCP films were spin-cast from various solvents with different concentration. Device configuration: ITO/CdS-BCP/PTB7:PC₇₁BM/MoO₃/Al.

Table S1. Performance of devices fabricated on CdS-BCP cathode interlayer deposited from various solvents and different concentration, AM 1.5G irradiation (100 mW·cm⁻²).

Solvent &	V_{oc}	Jsc	FF	PCE (%)		R_s	R_{sh}
concentration	V	mA·cm ⁻²	%	Best	Avg	$\Omega \cdot cm^2$	KΩ·cm ²
DMF 10 mg/mL $(15\pm3 \text{ nm})$	0.706	17.35	63.32	7.76	7.52	5.67	0.66
DMF 20 mg/mL	0.707	17.01	63.94	7.69	7.57	5.61	1.09
$(20 \pm 2 \text{ mm})$ DMF 30 mg/mL	0.707	17.21	63.81	7.76	7.42	5.19	0.85
$(33 \pm 3 \text{ nm})$ THF 10 mg/mL	0.709	16.61	63.73	7.51	7.28	5.16	0.90
(16±3 nm) THF 20 mg/mL	0 710	16 94	61.07	7 34	7 17	6 4 5	0.86
(29±4 nm) THF 30 mg/mL	0.706	17.20	62.72	7.60	7.27	5 16	0.81
(38±4 nm) AT 10 mg/mL	0.700	17.20	02.72	7.02	1.57	5.10	
$(18\pm5 \text{ nm})$	0.709	16.81	62.58	7.46	7.25	5.45	0.84
$(30\pm6 \text{ nm})$	0.701	16.85	61.51	7.26	7.11	5.05	0.70
$(39\pm5 \text{ nm})$	0.705	16.89	61.86	7.37	7.27	5.66	0.77
CF 10 mg/mL (20±4 nm)	0.689	16.52	58.30	6.64	6.53	7.06	0.57
CF 20 mg/mL $(33\pm5 \text{ nm})$	0.699	16.95	58.63	6.95	6.75	7.79	0.76
$\frac{\text{CF 30 mg/mL}}{(44 \pm 4 \text{ nm})}$	0.688	16.03	59.95	6.61	6.45	8.14	0.84

Fig. S3 AFM height images $(10.0\mu m \times 10.0\mu m)$ of hybrid CdS-BCP interlayers with different solvents (a) DMF, (b) THF, (c) AT and (d) CF, respectively. The height bar is 50 nm.

Fig. S4 EQE of devices incorporating CdS-P and CdS as cathode interlayers measured in air with a larger spot size than the device area.

Fig. S5 Absorption spectra of hybrid CdS-P (BCP, Bphen, Mphen and Phen) interlayers and the CdS-P/PTB7:PC₇₁BM films on quartz substrate. The inset figure shows the zoom in view of the absorption spectra of hybrid CdS-P films.

Fig. S6 J-V curves of electron-only devices. CdS or CdS-P is used as electrontransporting layers, and device with bare ITO (without any electron transport layers) was fabricated for comparison.

Fig. S7 AFM height images $(2.0\mu \text{m} \times 2.0\mu \text{m})$ of PTB7:PC₇₁BM films on different hybrid cathode interlayer. (a) CdS-BCP, (b) CdS-Bphen, (c) CdS-Mphen, (d) CdS-Phen and (e) CdS, respectively. The height bar is 30 nm.

Fig. S8 UPS measurement of CdS, and CdS-P films on ITO. Films of CdS and CdS-P were decomposed from its precursors on ITO after annealing at 175 °C for 30 min.