Supporting information

Ultrathin MnO₂ nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors

Yihui Dai^a, Ling Chen^a, Vladimir Babayan^b, Qilin Cheng^a, Petr Saha^b, Hao Jiang^{a*}, Chunzhong Li^{a*}

a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science and Technology, Shanghai 200237, China

b Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678,

760 01 Zlin, Czech Republic

*Corresponding author: Tel.: +86-21-64250949, Fax: +86-21-64250624

E-mail: jianghao@ecust.edu.cn (Prof. H. Jiang) czli@ecust.edu.cn (Prof. C. Z. Li)

Part I: Figures

Fig. S1 SEM images of (a) Fe₂O₃ nanocubes, (b) Fe₂O₃@PDA nanocubes, (c) Fe₂O₃@C nanocubes and (d) N-doped carbon nanoboxes.

Fig. S2 High-magnification SEM image of a representative MnO₂/C nanobox.

Fig. S3 (a) N_2 adsorption/desorption isotherms and (b) pore size distribution curves of N-doped carbon nanoboxes and MnO₂/C nanoboxes.

Fig. S4 The galvanostatic charge/discharge curves of (a) the N-doped carbon and (b) the MnO_2/C nanoboxes; (c) CV curves at 20 mV s⁻¹and (d) rate performances of the MnO_2/C nanoboxes and the pure ultrathin MnO_2 nanosheets with a three-electrode configuration in a 1 M Na₂SO₄ electrolyte. It is obvious that the as-obtained MnO_2/C nanoboxes deliver a higher specific capacitance than that of pure MnO_2 . Furthermore, the CV curve of the MnO_2/C nanoboxes also exhibits an almost vertical line between 0-0.2 V and 0.8-1.0 V compared to the pure MnO_2 , suggesting a higher rate capability, which is verified by the test results (Fig. S4d).

Fig. S5 Schematic illustration of the as-fabricated ASC device based on MnO_2/C nanoboxes as positive electrode and N-doped carbon nanoboxes as negative electrode in 1 M Na_2SO_4 electrolyte.

Part II: Calculations

The specific capacitance was calculated from the CV curve according to the following equation:

$$C = Q/(\Delta Vm),$$

where C (F g⁻¹) is the specific capacitance, Q (C) is the average charge during charge/discharge process, m (g) is the mass of active material, and ΔV (V) is the potential window of the CV curve. The discharge specific capacitance could also be calculated from the discharge curves by the following equation:

$$C = I\Delta t / (m\Delta V),$$

where I (A), Δt (s), m (g) and ΔV (V) are the discharge current, discharge time, mass of the active materials (or mass of the total electrode materials), and the potential window, respectively.

The energy density (E, W h kg⁻¹) and power density (P, W kg⁻¹) were calculated by the following equations:

$$E = C(\Delta V)^2/2,$$
$$P = E/\Delta t$$

where C (F g⁻¹) is the specific capacitance of the active materials, and ΔV (V) is the potential window, Δt (s) is the discharge time consumed in the potential range of ΔV .