## Electronic structure, photovoltage, and photocatalytic hydrogen evolution with $p\mbox{-}CuBi_2O_4$ nanocrystals

Geetu Sharma, a Zeqiong Zhao, a Pranab Sarker, Benjamin A. Nail, a Jiarui Wang, a Muhammad N. Huda, b and Frank E. Osterloh\*a

Supporting Information (4 pages)

<sup>b.</sup> University of Texas Arlington, Department of Physics, Arlington, TX 76019, USA.



**Figure S1.** SPS measurement configuration and emission spectrum of light source (Grating 2 was used for all measurements)

<sup>&</sup>lt;sup>a.</sup> Department of Chemistry, University of California, Davis. One Shields Avenue, Davis, CA, 95616, USA. Phone: (+1)530 754 6242; Fax: (+1)530 752 8995; E-mail: fosterloh@ucdavis.edu.



**Figure S2.** Profilometry scans of  $CuBi_2O_4$  films on FTO with different thickness.



**Figure S3.** H<sub>2</sub> evolution from 50 mg CuBi<sub>2</sub>O<sub>4</sub> nanoparticles in 100 mL of aqueous methanol (20% v/v) solution under visible light (> 400 nm, 240 mW cm<sup>-2</sup> at flask), before and after addition of a Pt cocatalyst. The lower activity of the platinated material is attributed to photocorrosion of CuBi<sub>2</sub>O<sub>4</sub> during photodeposition of Pt. Conditions: 50 mg of CuBi<sub>2</sub>O<sub>4</sub> was dispersed in a solution of H<sub>2</sub>PtCl<sub>6</sub> (1 mol % Pt) and 10% methanol in water and irradiated two hours with unfiltered light from a 300 W Xe arc lamp. Platinated powders were washed repeatedly with pure water before use.



**Figure S4.** Photoelectrochemical scan on  $CuBi_2O_4$  nanocrystal film on FTO substrate in 0.1 M  $K_2SO_4$  under Xe – illumination (full spectrum, 40 mW cm<sup>-2</sup>).



**Figure S5:** The left figure represents the probability of forming different intrinsic defects in CuBi<sub>2</sub>O<sub>4</sub> with respect to its single-phase growth region (see yellow bounded region at right figure); the yellow region in the left figure was achieved using the chemical potential landscapre analysis (for detail

methodology, see ref. 1<sup>1</sup>).  $\Delta$ H is the defect formation energy. In the right figure,  $\Delta \mu_{\alpha}$  ( $\alpha$  = Cu, Bi, and O) axes correspond to growth conditions, from rich ( $\Delta \mu_{\alpha}$  = 0 eV) to poor ( $\Delta \mu_{\alpha}$  = formation enthalpy), of respective species. The values of A, B, and C in the figure are ( $\Delta \mu_{cu}$  = -0.33 eV,  $\Delta \mu_{Bi}$  = -0.96 eV,  $\Delta \mu_{0}$  = - 1.42 eV), ( $\Delta \mu_{cu}$  = -1.74 eV,  $\Delta \mu_{Bi}$  = -3.10 eV,  $\Delta \mu_{0}$  = 0 eV), and ( $\Delta \mu_{cu}$  = -1.60 eV,  $\Delta \mu_{Bi}$  = -3.17 eV,  $\Delta \mu_{0}$  = 0 eV), respectively.



Figure S6. The DFT+U electronic band structure of Cu<sub>Bi</sub> - CuBi<sub>2</sub>O<sub>4</sub>.

## **Reference**:

1 P. Sarker, M. M. Al-Jassim and M. N. Huda, J. Appl. Phys., 2015, **117**, 035702.