Supplementary Information

A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr³⁺

Shu-Ran Zhang,^a Jing Li,^a Dong-Ying Du,^{*a} Jun-Sheng Qin,^a Shun-Li Li,^b Wen-Wen He,^a Zhong-Min Su^{*a} and Ya-Qian Lan^{*a,b}

^a Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China. E-mail: zmsu@nenu.edu.cn
^b Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China. E-mail: yqlan@njnu.edu.cn

Identification code	NENU-505
Formula	$C_{14}H_{26}N_{3.5}O_{9.5}Zn$
Formula weight	460.18
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	27.7680(11)
<i>b</i> (Å)	7.9000(6)
<i>c</i> (Å)	18.2980(14)
α (°)	90.00
eta (°)	108.3290(15)
γ (°)	90.00
$V(Å^3)$	3810.3(4)
Ζ	4
D_{calcd} .[g cm ⁻³]	1.114
<i>F</i> (000)	1300
Reflections collected	13597
<i>R</i> (int)	0.0330
Goodness-of-fit on F^2	0.834
$R_1^a \left[I > 2\sigma \left(I\right)\right]$	0.0479
wR_2^b	0.1464

Table S1 Crystal data and structure refinements for NENU-505.

$${}^{a}R_{1} = \sum \left\| F_{o} \right\| - \left| F_{c} \right\| / \sum \left| F_{o} \right|. {}^{b}wR_{2} = \left| \sum w(\left| F_{o} \right|^{2} - \left| F_{c} \right|^{2}) \right| / \sum \left| w(F_{o}^{2})^{2} \right|^{1/2}.$$

Table S2 The selected bond lengths $[{\rm \AA}]$ and angles [deg] for NENU-505.

Bond length [Å]		Bond angle [deg]	
Zn(1)-O(3)	1.910(2)	O(3)-Zn(1)-O(5)	113.55(11)
Zn(1)-O(5)	1.930(2)	O(3)-Zn(1)-O(2)#1	114.98(10)
Zn(1)-O(2)#1	1.9476(19)	O(5)-Zn(1)-O(2)#1	112.06(12)
Zn(1)-O(1)#2	1.9615(18)	O(3)-Zn(1)-O(1)#2	94.48(9)
		O(5)-Zn(1)-O(1)#2	109.41(12)
		O(2)#1-Zn(1)-O(1)#2	110.97(10)

Symmetry transformations used to generate equivalent atoms: #1 x, -y, z+1/2; #2 -x, -y, -z.

Fig. S1 The TGA curve of NENU-505 was measured under N_2 atmosphere from 50 °C to 1000 °C at the heating rate of 10 °C ·min⁻¹.

Fig. S2 Coordination environments of (a) binuclear $[Zn_2(CO_2)_4(NO_3)]$ cluster and (b) the H₄ABTC ligand in NENU-505, respectively.

Fig. S3 The schematic representation of $[(CH_3)_2NH_2]^+$ ions located in the 3D framework of **NENU-505** along the *b* axis.

Fig. S4 XRPD patterns of simulated NENU-505 (black), as-synthesized NENU-505 (red) and immersed in water for a few hours (green).

Fig. S5 XRPD patterns of as-synthesized **NENU-505** (black) and **NENU-505** samples exposed in the air after a week (red), two weeks (green), a month (blue) and two months (pink), respectively. Inset: the optical image of **NENU-505** exposed after two months in the air.

-		
Materials	Adsorption capacity (mg g ⁻¹)	Ref.
Graphene oxide	397	1
ErCu–POM (Er-3)	391.3	2
PW ₁₁ V@MIL-101	371	3
Cd-MOF (2)	317.9	4
Activated carbon	135	5
Zn-DDQ	135	6
Cd-MOF (1)	105	4
Cu-DDQ	90	6
Pb-DDQ	86	6
NENU-505	33.5	This work
Cd-MOF (3)	30	4
MOF@graphite oxide	18	7
446-MOF	17	8
Zn-MOF	0.75	9

Table S3 Comparison of MB adsorption capacity in various adsorbents.

Table S4 The adsorption capacity of NENU-505 at room temperature for every dye.

Dye composition	Adsorption capacity	Adsorption capacity	Adsorption capacity
	for MB (mg g ⁻¹)	for BR 2 (mg g^{-1})	for BG 1 (mg g ⁻¹)
Single component dye	33.5	_UD ^[a]	_UD ^[a]
(MB)			
Single component dye	$_{\rm UD^{[a]}}$	4.5	_UD ^[a]
(BR 2)			
Single component dye	$_UD^{[a]}$	_UD ^[a]	17.6
(BG 1)			
Mixture dye (MB and	33.3	_UD ^[a]	_UD ^[a]
BR 1)			
Mixture dye (MB and	33.4	_UD ^[a]	_UD ^[a]
MO)			
Mixture dye (BG 1	$_UD^{[a]}$	_UD ^[a]	17.3
and BR 1)			
[a] UD: undetected			

Table S5 The ICP percentage of Cr^{3+} encapsulated by NENU-505 in multi-element solutions.

Multi-element solution	The ICP percentage of Cr^{3+} (%)
1: Fe ²⁺ , Cu ²⁺ and Cr ³⁺	4.056
2: Cu ²⁺ , Ni ²⁺ and Cr ³⁺	4.009
3: Cu ²⁺ , Co ²⁺ and Cr ³⁺	3.858
4: Ni ²⁺ , Co ²⁺ and Cr ³⁺	4.069

Fig. S6 XRPD patterns of simulated **NENU-505** (black), as-synthesized **NENU-505** (red) and after the absorption of MB (green), BR 2 (blue) and BG (pink), respectively.

Fig. S7 IR spectra of NENU-505, MB@NENU-505, BR 2@NENU-505, and BG@NENU-505.

Fig. S8 UV/Vis spectra of DMA solution of mixed MB and MO with NENU-505.

Fig. S9 UV/Vis spectra of DMA solution of mixed BG 1 and BR 1 with NENU-505.

Fig. S10 (a) The BR 2 released from BR 2@NENU-505 in a saturated solution of NaCl in DMA monitored by UV absorption. (b) The release-rate comparison of BR 2 from BR 2@NENU-505 in a saturated solution of NaCl in DMA (purple) and pure DMA (dark green).

Fig. S11 (a) The BG 1 released from BG 1@NENU-505 in a saturated solution of NaCl in DMA monitored by UV absorption. (b) The release-rate comparison of BG 1 from BG 1@NENU-505 in a saturated solution of NaCl in DMA (orange) and pure DMA (pale green).

Fig. S12 (a) UV-vis spectra of MB solution in DMA after adsorption experiments with NENU-505, as well as the MB released (desorption) from MB@NENU-505 using a saturated solution of NaCl in DMA. (b) The adsorption and desorption efficiency of NENU-505 toward MB after six cycles.

Fig. S13 XRPD patterns of **NENU-505** toward MB after adsorption–desorption cycle 1 and cycle 6.

Fig. S14 XRPD patterns of NENU-505 immersed in different metal ions.

Fig. S15 IR spectra of NENU-505 immersed in different metal ions.

Fig. S16 EDS analysis of Cr³⁺@NENU-505.

Fig. S17 UV/Vis spectra of solid NENU-505 and Cr³⁺@NENU-505.

Fig. S18 XPS spectrum of Cr^{3+} for Cr^{3+} @NENU-505.

Fig. S19 The photographs of **NENU-505** in 10 mL DMA solutions containing three equal concentration of each metal ion (1: Fe²⁺, Cu²⁺ and Cr³⁺; 2: Cu²⁺, Ni²⁺ and Cr³⁺; 3: Cu²⁺, Co²⁺ and Cr³⁺; 4: Ni²⁺, Co²⁺ and Cr³⁺, 0.01 M).

Notes and References

1 J.-D. Xiao, L.-G. Qiu, X. Jiang, Y.-J. Zhu, S. Ye and X. Jiang, Carbon, 2013, 59, 372.

2 F.-Y. Yi, W. Zhu, S. Dang, J.-P. Li, D. Wu, Y.-h. Li and Z.-M. Sun, *Chem. Commun.*, 2015, **51**, 3336.

3 A.-X. Yan, S. Yao, Y.-G. Li, Z.-M. Zhang, Y. Lu, W.-L. Chen and E.-B. Wang, *Chem. Eur. J.*, 2014, **20**, 6927.

4 F.-Y. Yi, J.-P. Li, D. Wu and Z.-M. Sun, Chem. Eur. J., 2015, 21, 11475.

5 The national standard of the People's Republic of China: wooden granular activated carbon for water purification. GB/T13803.2-1999.

6 Y. Zhu, Y.-M. Wang, S.-Y. Zhao, P. Liu, C. Wei, Y.-L. Wu, C.-K. Xia and J.-M. Xie, *Inorg. Chem.*, 2014, **53**, 7692.

7 L. Li, X. L. Liu, H. Y. Geng, B. Hu, G. W. Song and Z. S. Xu, *J. Mater. Chem. A*, 2013, 1, 10292.

8 M. Du, X. Wang, M. Chen, C.-P. Li, J.-Y. Tian, Z.-W. Wang and C.-S. Liu, *Chem. Eur.* J., 2015, **21**, 9713.

9 C.-Y. Sun, X.-L. Wang, C. Qin, J.-L. Jin, Z.-M. Su, P. Huang and K.-Z. Shao, *Chem. Eur. J.*, 2013, **19**, 3639.