Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Fabrication of a ternary CdS/ZnIn₂S₄/TiO₂ heterojunction for enhancing

photoelectrochemical performance: Effect of cascading electron-hole transfer

Mahadeo A. Mahadik, Pravin S. Shinde, Min Cho* and Jum Suk Jang*

Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of

Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic

of Korea

*Corresponding authors. Tel.: +82 63 850 0846; fax: +82 63 850 0834.

E-mail addresses: jangjs75@jbnu.ac.kr (J.S. Jang), cho317@ jbnu.ac.kr (Min Cho).

Table S1

Elemental composition of the CdS/ZnIn $_2S_4$ /TiO $_2$ architecture film obtained from TEM-EDX data.

Elements	Atomic composition (%)
ОК	24.06
S K	25.16
Ti K	23.82
Zn K	0.29
Cd L	23.45
In L	3.22

Reaction mechanism of CdS formation

The aqueous ammonia solution was reacted with $Cd(NO_3)_2$ to produce the white precipitate of $Cd(OH)_2$. The excess amount of aqueous ammonia solution dissolves the $Cd(OH)_2$ and forms the tetra amine cadmium $\left[Cd((NH_3)_4\right]^{+2}$. Addition of thiourea to this solution, the CN_2H_2 and SH⁻ products could be formed. Then, SH⁻ reacts with $\left[Cd((NH_3)_4\right]^{+2}$ and form the CdS. The reaction mechanism is given below (reaction 1 to 4).

$$Cd(NO_3)_2(aq) + 2NH_4OH(aq) \rightarrow Cd(OH)_2 \downarrow + 2(NH_4)(NO_3)$$
⁽¹⁾

$$Cd(OH)_{2} + 4NH_{4}OH \leftrightarrow \left[Cd((NH_{3})_{4})^{*2} + 2OH^{-} + 4H_{2}O\right]$$
⁽²⁾

$$CS(NH_2)_2 + OH^- \leftrightarrow CN_2H_2 + SH^- + H_2O$$
(3)

$$\left[Cd(NH_{3})_{2}\right]^{+2} + SH^{-} \leftrightarrow CdS + NH_{4}^{+} + 3NH_{3}$$

$$\tag{4}$$

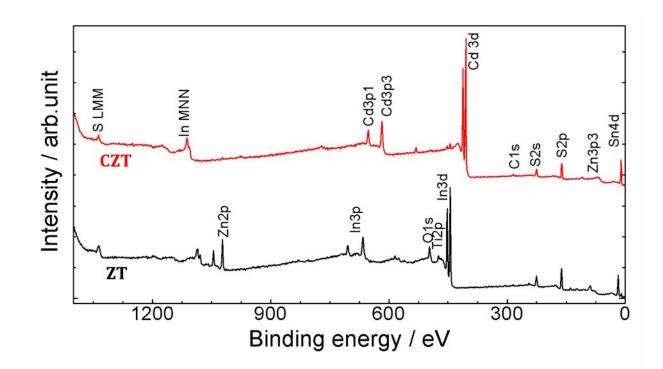


Figure S1 XPS survey spectra for ZnIn₂S₄/TiO₂/FTO and CdS/ZnIn₂S₄/TiO₂/FTO films

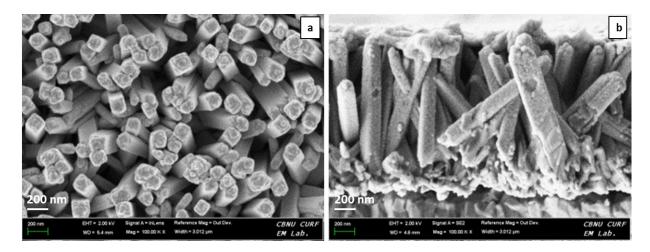


Figure S2 (a) SEM top view and (b) cross section view of CdS/TiO $_2$

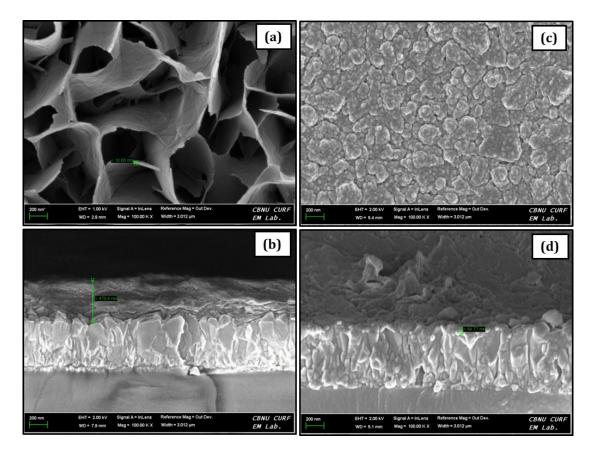
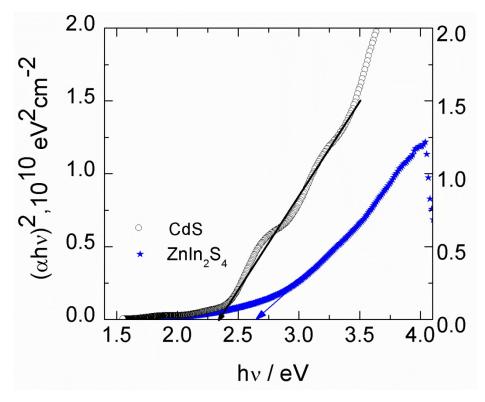
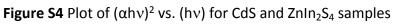




Figure S3 Surface and cross-sectional morphologies of (a-b) $ZnIn_2S_4$ and (c-d) CdS deposited on FTO substrate

