Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Fig. S1 XRD patterns of the CdS-N and the noble metal (Pt, Ru, or Pd)-modified CdS-N prepared by the OPS method.

Fig. S1 indicates the noble metal (Pt, Ru, or Pd)-modified CdS-N shows identical diffraction pattern to the pristine CdS-N. All the diffraction peaks can be indexed to the hexagonal phase CdS and no peak originates from the noble metal can be perceived.

Fig. S2 UV-vis DRS spectra of CdS-N and the noble metal (Pt, Ru, or Pd)-modified CdS-N prepared by the OPS method.

Fig. S2 indicates the noble metal (Pt, Ru, or Pd)-modified CdS-N show a same band gap absorption as that of pristine CdS-N. But, due to the presence of the noble metal, the absorption in visible light range is slightly improved.

Fig. S3 (a) TEM image of Pt/CdS-N, and SEM images of the prepared (b) Pt/CdS-N, and (c) Pt/CdS-P.

Fig. S3-a demonstrates the length of the prepared CdS nanorods is in the range of 1-6 μ m. The smooth surface feature of Pt/CdS-N is further confirmed by the SEM image (Fig. S3-b). Fig. S3-c indicates the sample is composed by nanoparticles with no distinctive morphology. The average size of the particles is ca. 100 nm.

Fig. S4 SEM images of the prepared (a) CdS-N, (b) Ru/CdS-N, (c) Pt/CdS-N(c), and (d) Pd/CdS-N.

Fig. S4 indicates the morphology of CdS-N sample is not affected by the deposition of noble metals. M/CdS-N (M=Pt, Pd, Ru) samples maintains a rod-like structure.

Fig. S5 Nitrogen adsorption-desorption isotherms of the CdS-N, CdS-P, and the corresponding platinized samples prepared by the OPS method. Inset shows the corresponding BET transform plots of 1/Q [(P_0/P)-1] versus P/P₀.

As shown in Fig. S5, the N₂ adsorption-desorption curves are of a type V isotherm with a H3 type of hysteretic loop. A disordered mesoporous structure formed by the agglomeration of small particles, therefore, can be expected in these samples. Based on the N₂ isotherm data, the BET surface area of PT samples can be derived. The linear fits to the corresponding BET transform plot of $1/Q[(P_0/P)-1]$ versus P/P₀ (where Q is the quantity of adsorbed N₂ (cm³/g, STP), P/P₀<0.3) are shown in the inset of Fig. S5. The BET results derived from the linear fits are listed in Tab. 1. The surface area of CdS-P (36 m²·g⁻¹) is larger than that of CdS-N (26 m²·g⁻¹). A decrease of the surface areas can be observed after deposition of Pt, Pd, or Ru.

Fig. S6 UV-vis DRS spectra of the CdS-N samples loaded with different amount of Pt. The samples were prepared by the OPS method.

Fig. S6 indicates the visible absorption efficient of the platinized CdS-N increases with Pt amount. This absorption caused by the deposited Pt. The absorption of CdS will be reduced by the excessive Pt due to its shielding effect.

Entry	Photocat.	Co-cat. &	Preparation method	Reaction condition			$r_{\rm H2}^{\ \ b}$	r' _{H2} °	Ref
		amount ^a		Light source	Dosage	Solution			
					(mg)	(V.%)/(mL)			
1	CdS	$0.2\% \ MoS_2$	Impregnation-sulfidation	300 W Xe-lamp, λ>420 nm	100	10%/200	0.54	5.4	1
2	CdS	0.9mol% MoS ₂	Ball milled	300 W Xe-lamp, λ>420 nm	100	10%/150	1.31	13.1	2
3	CdS/RGO	1.5% MoS ₂	Solvothermal	350 W Xe-lamp, λ>420 nm	50	10%/100	0.10	2.0	3
4	CdS/UIO-66	1.5% MoS ₂	Solvothermal	300 W Xe-lamp, λ>420 nm	20	10%/80	0.65	32.5	4
5	CdS	2% MoS ₂	Hydrothermal-calcination	300 W Xe-lamp, λ>400 nm	100	10%/100	0.41	4.1	5
6	CdS	2 % MoS ₂	Sonication-mixing	300 W Xe-lamp, λ>420 nm	200	20%/300	2.59	13.0	6
7	CdS /GR	2 % MoS ₂	hydrothermal	500W UV lamp, 280-320 nm	20	10%/100	0.14	7.0	7
8	CdS-GR	5% MoS ₂	Hydrothermal	300 W Xe-lamp, λ>400 nm	100	20%/160	2.32	23.2	8
9	CdS	$? \% WS_2^d$	hot injection	300 W Xe-lamp, λ>420 nm	10	10%/10	0.02	2.0	9
10	CdS/ZnS	1% WS ₂	Hydrothermal	300 W Xe-lamp, λ>420 nm	100	10%/150	0.78	7.8	10
11	CdS	1.0% WS ₂	Impregnation-sulfidation	300 W Xe-lamp, λ>420 nm	100	10%/200	0.42	4.2	11
12	CdS	1.2mol% NiS	hydrothermal	300 W Xe-lamp, λ>420 nm	300	30%/100	2.18	7.3	12
13	CdS/GR	1.0% SiW ₁₁ Co	hydrothermal	300 W Xe-lamp, λ>400 nm	100	30/160	1.7	17.0	13
14	g-C ₃ N ₄ /CdS	5% Au	Calcination-deposition	300 W Xe-lamp, λ>420 nm	100	20%/80	0.11	1.1	14
15	CdS	0.1% Pt	Coprecipitation-annealing	300 W Xe-lamp, λ>400 nm	100	10%/? ^d	0.29	2.9	15
16	CdS	0.23% Pt	Solvothermal	350 W Xe-lamp, λ>420 nm	50	10%/80	1.21	24.2	16
17	CdS	0.36% Pt	Solvothermal	350 W Xe-lamp, λ>420 nm	50	10%/80	0.80	16.0	17
18	CdS	0.3% Pt	Solvothermal	350 W Xe-lamp, λ>420 nm	50	10%/80	1.49	29.8	18
19	CdS	0.5% Pt	Hydrothermal-sulfidation	350 W Xe-lamp, λ>420 nm	50	10%/80	0.47	9.4	19
20	CdS/RGO	0.5% Pt	Solvothermal	350 W Xe-lamp, λ>420 nm	20	10%/80	1.12	56.0	20

Table S1 Comparison the photocatalytic H₂ production activity of CdS based photocatalysts over lactic acid solution.

Entry	Photocat.	Co-cat. &	Preparation method	Reaction condition			$r_{\rm H2}^{\ \ b}$	r' _{H2} °	Ref
		amount ^a		Light source	Dosage	Solution			
					(mg)	(V.%)/(mL)			
21	CdS	1% Pt ₃ Co	Hydrothermal	300 W Xe-lamp, λ>420 nm	10	10%/50	0.16	16.0	21
22	CdS/TiO ₂	2% Pt	Hydrothermal-deposition	350 W Xe-lamp, λ>420 nm	40	10%/80	0.27	6.8	22
23	CdS QDs/GR	2.1% Pt	hot injection-sonication	300 W Xe-lamp, λ>420 nm	72	10%/100	2.15	29.9	23
24	CdS/WO ₃	3% Pt	Hydrothermal	500 W Xe-lamp, λ>400 nm	50	? ^d	0.15	3.0	24
25	CdS	0.3% Pt	Solvothermal	300 W Xe-lamp, λ>400 nm	50	10%/100	0.81	16.2	This work
26	CdS	<u>0.06% Pt</u>	Solvothermal	300 W Xe-lamp, λ>400 nm	50	10%/100	0.51	10.2	This work

^a: in wt.% term if unspecified; ^b: the highest evolution rate of H₂ (mmol·h⁻¹) obtained under the optimized condition; ^c: Specific rate, (mmol·g⁻¹·h⁻¹); ^d not given by the work.

References

- (1) (a) X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li. J. Am. Chem. Soc., 2008, 130, 7176. (b) X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li. J. Phys. Chem. C, 2010, 114, 1963.
- (2) G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu, Q. Meng. Appl. Catal. A Gen., 2012, 443-444, 138.
- (3) Y. Li, H. Wang, S. Peng. J. Phys. Chem. C, 2014, 118, 19842.
- (4) L. Shen, M. Luo, Y. Liu, R. Liang, F. Jing, L. Wu. Appl. Catal. B Environ., 2015, 166-167, 445.
- (5) J. Xu, X. Cao. Chem. Eng. J., 2015, 260, 642.
- (6) K. Chang, M. Li, T. Wang, S. Ouyang, P. Li, L. Liu, J. Ye. Adv. Energy Mater., 2015, 5.
- (7) T. T. Jia, A. Kolpin, C. S. Ma, R. C. T. Chan, W. M. Kwok, S. C. E. Tsang. Chem. Commun., 2014, 50, 1185.
- (8) M. Liu, F. Li, Z. Sun, L. Ma, L. Xu, Y. Wang. Chem. Commun., 2014, 50, 11004.
- (9) J. Chen, X. J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue, H. Zhang. Angew. Chem. Int. Ed., 2015, 54, 1210.
- (10) G. Chen, F. Li, Y. Fan, Y. Luo, D. Li, Q. Meng. Catal. Commun., 2013, 40, 51.
- (11) X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li. J. Phys. Chem. C, 2011, 115, 12202.
- (12) W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu. Chem Commun, 2010, 46, 7631.
- (13) M. Liu, F. Li, Z. Sun, L. Xu, Y. Song, A. Munventwali. RSC Adv., 2015, 5, 47314.
- (14) W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou. Appl. Catal. B Environ., 2015, 168-169, 465.
- (15) G. Xin, B. Yu, Y. Xia, T. Hu, L. Liu, C. Li. J. Phys. Chem. C, 2014, 118, 21928.
- (16) J. Yu, Y. Yu, B. Cheng. RSC Adv., 2012, 2, 11829.
- (17) J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng. Appl. Catal. B Environ., 2014, 156-157, 184.
- (18) J. Jin, J. Yu, G. Liu, P. K. Wong. J. Mater. Chem. A, 2013, 1, 10927.
- (19) Q. J. Xiang, B. Cheng, J. G. Yu. Appl. Catal. B Environ., 2013, 138, 299.
- (20) Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong. J. Am. Chem. Soc., 2011, 133, 10878.
- (21) Z. F. Hu, J. C. Yu. J. Mater. Chem. A, 2013, 1, 12221.
- (22) L. Qi, J. Yu, M. Jaroniec. Phys. Chem. Chem. Phys., 2011, 13, 8915.
- (23) Z. Fang, Y. B. Wang, J. B. Song, Y. M. Sun, J. J. Zhou, R. Xu, H. W. Duan. Nanoscale, 2013, 5, 9830.
- (24) L. J. Zhang, S. Li, B. K. Liu, D. J. Wang, T. F. Xie. ACS Catal., 2014, 4, 3724.