Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

A novel 3D ZnO/Cu₂O nanowires photocathode material with highly efficient

photoelectrocatalytic performance

Jing Bai⁺, Yunpo Li⁺, Rui Wang, Ke Huang, Qingyi Zeng, Jinhua Li, and Baoxue Zhou*

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

Figure S1 Visual images of Cu(OH)₂ NWs electrode, Cu₂O NWs electrode and 3D

ZnO/Cu₂O NWs electrode

Figure S2 SEM images of ZnO/Cu_2O NWs electrode obtained at an annealing temperature of 700°C: (a) low magnification and (b) high magnification

Figure S3 EDX of 3D ZnO/Cu₂O NWs electrode

Figure S4. Photoelectrochemical response of pure Cu_2O NWs , ZnO NPs/Cu₂O NWs and (b) 3D ZnO/Cu₂O NWs (1500rpm, 25 cycles, 500°C) under dark and illumination of AM 1.5G.

Figure S5 H₂ production rate with and without sacrificial electron acceptors (K₂S₂O₈)

Figure S6 XPS survey of 3D ZnO/Cu₂O NWs: (a) as-prepared and (b) after the 900s of stability testing and (c) Cu₂O NWs after the 900s of stability testing.