Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Rutile-TiO₂ Decorated Li₄Ti₅O₁₂ Nanosheet Arrays with 3D Interconnected Architecture as Anode for High Performance Hybrid Supercapacitor

Lin Gao, Dekang Huang, Yan Shen, Mingkui Wang*

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China.

E-mail: <u>mingkui.wang@mail.hust.edu.cn</u>

Figure S1. (a) XRD pattern and (b) SEM image for as-prepared TiO₂ nanosheet arrays without calcination.

Figure S2. XRD pattern for N-CNTs.

Figure S3. (a) XPS pattern of N-CNTs and (b) high-resolusion XPS spectrum of N1s of N-CNTs.

Figure S4. N₂ absorption and desorption of the N-CNTs samples

Figure S5. TEM images of the RLTO nanosheet arrays

Figure S6.(a) CV curves of RLTO and TiO₂ electrodes at a scan rate of 0.5 mV s⁻¹and (b) Nyquist plots of RLTO and TiO₂ electrode (the inset is the equivalent circuit). (c) The galvanostatic charge-discharge curves in the voltage window of $1\sim3$ V at different current densities for the TiO₂ electrode.

Figure S7. The relation between the real resistance and and corrsponding low frequency for the RLTO and

TiO₂ electrodes.

Figure S8. CV curves at a scan rate of 5 mV s⁻¹ for (a) RLTO//N-CNTs LICs, (b) N-CNTs electrode and (c)

RLTO electrode.