Supporting information for

A facile method for the synthesis of a porous cobalt oxide-carbon hybrid as a highly efficient water oxidation catalyst

Mei Zhang, Yong-Liang Huang, Jia-Wei Wang and Tong-Bu Lu*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Figure S1. The SEM image (left) and PXRD pattern (right) for the synthesized nanocrystals of ZIF-67.

Figure S2. TGA curve for ZIF-67 under a nitrogen atmosphere. The sample was dried at 80 °C for 2 h before measurement.

Figure S3. N₂ adsorption isotherms for T-CoO_x-C at 77 K.

	Volume adsorbed	Average pore	specific surface
	$(cm^{3} \cdot g^{-1})$	size (nm)	area $(m^2 \cdot g^{-1})$
500-CoO _x -C	85	6.3	84
600-CoO _x -C	101	4.0	157
700-CoO _x -C	123	3.4	223
800-CoO _x -C	141	3.3	262
900-CoO _x -C	131	3.6	225

Table S1. The results of N_2 adsorption-desorption analysis for T-CoO_x-C

Figure S4. TEM images for (a) 500-CoO_x-C, (b) 600-CoO_x-C, (c) 700-CoO_x-C, (d) 800-CoO_x-C and (e) 900-CoO_x-C.

Figure S5. TEM image (top left), and EDS elemental mapping images for 800-CoO_x-C.

Figure S6. Oxygen yields from chemical water oxidation under different pH values, using Ru(bpy)₃(PF₆)₃ (4.5 mM) as an oxidant. Experimental conditions: 1 μ g catalyst (3 μ M for Co), 0.1M NaB_i buffer.

Figure S7. Oxygen yields from chemical water oxidation under different concentrations of NaB_i buffer using 9 mg of Ru(bpy)₃(PF₆)₃ (4.5 mM) as an oxidant. Experimental condition: 1 μ g catalyst (3 μ M for Co), pH 8.5.

Figure S8. Oxygen yields from chemical water oxidation using different amounts of catalyst, using $Ru(bpy)_3(PF_6)_3$ as an oxidant. Experimental condition: 20 mM NaB_i, pH 8.5.

700-CoO _x -C	$Ru(bpy)_3(PF_6)_3$	TON	TOF (in initial 20 s)
(µM for Co)	(mM)		
3	4.5	160 ± 8	4.0 ± 0.1
1.5	4.5	191 ± 7	4.1 ± 0.2
1.5	6	225 ± 11	4.5 ± 0.2
0.6	6	598 ± 20	12.0 ± 0.5
0.3	7.5	910 ± 21	14.6 ± 0.4

Table S2. The results of chemical water oxidation under different conditions

Measurement condition: 20 mM NaB_i, pH 8.5.

Figure S9. The PXRD pattern (left) and XPS pattern (right) for ZIF-67-Co₃O₄.

Figure S10. The EDS pattern of ZIF-67-Co₃O₄. (Co and O from ZIF-67-Co₃O₄, Cu from copper net, Cr and Si from the barrel and probe of the instrument)

Figure S11. SEM (left) and TEM (right) images for ZIF-67-Co₃O₄.

Catalyst	TON	TOF (in initial 20 s)
700-CoO _x -C	910 ± 21	14.6 ± 0.4
mixed ZIF-67-Co ₃ O ₄ + carbon	503 ± 16	7.2 ± 0.2
ZIF-67-Co ₃ O ₄	225 ± 13	2.6 ± 0.1
IrO ₂	303 ± 17	3.4 ± 0.1
RuO ₂	102 ± 7	1.0 ± 0.04

Table S3. TONs and TOFs for different catalysts from chemical water oxidation

Figure S12. Oxygen yields from photochemical oxidation under different concentrations of Na₂S₂O₈. Experimental conditions: 100 W xenon lamp ($\lambda \ge 420$ nm), 0.1 mg 700-CoO_x-C (3 μ M for Co), [Ru(bpy)₃](ClO₄)₂ (4.2 mM), 0.1 M sodium phosphate buffer pH 8.5, total volume of solution 3.1 mL.

catalyst	oxidant	TON (per	TOF (s ⁻¹)	pН	ref
		Co atom)			
700-CoO _x -C	[Ru(bpy) ₃] ²⁺ -	12	3.9 × 10 ⁻²	8.5	This work
	$Na_2S_2O_8$				
Cobalt Oxide	[Ru(bpy) ₃] ²⁺ -	1.35	2.3×10^{-2}	5.8	J. Am. Chem. Soc. 2015,
Nanocubanes	$Na_2S_2O_8$				137, 4223–4229
Co ₃ O ₄ /porous SiO ₂	$[Ru(bpy)_3]^{2+}$ -	2.12		5.8	ACS Catal. 2015, 5,
core/shell	$Na_2S_2O_8$				1037-1044
Mesoporous Co ₃ O ₄	Ce ⁴⁺	0.25	2.2×10^{-3}	1~2	J. Am. Chem. Soc. 2013,
					135, 4516-4521
Co ₃ O ₄ in mesoporous	$[Ru(bpy)_3]^{2+}$ -		2.12 × 10 ⁻⁴ ~	5.8	ACS Catal. 2012, 2,
silica support	$Na_2S_2O_8$		4.05×10^{-4}		2753-2760
Li ₂ Co ₂ O ₄	[Ru(bpy) ₃] ²⁺ -	0.2	1.0×10^{-3}	5.8	Angew. Chem. Int. Ed. 2012,
	$Na_2S_2O_8$				<i>51</i> , 1616-1619
Co ₃ O ₄ in mesoporous	$[Ru(bpy)_3]^{2+}$ -	1.34		5.8	Angew. Chem. Int. Ed. 2009,
silica SBA-15	$Na_2S_2O_8$				48, 1841-1844
support					
6 nm Mn doped	[Ru(bpy) ₃] ²⁺ -	1.5	1.8×10^{-3}	5.8	Catal. Today 2014, 225,
Co ₃ O ₄ nanoparticles	$Na_2S_2O_8$				171-176.
Hollow Co ₃ O ₄	$[Ru(bpy)_3]^{2+}$ -		2.7×10^{-4}	5.8	Nanoscale 2014, 6, 7255-
microsphere	$Na_2S_2O_8$				7262.
Co-SBA (single site)	$[Ru(bpy)_3]^{2+}$ -		1.4×10^{-2}	5.6	Energy Environ. Sci. 2013,
	$Na_2S_2O_8$				6, 3080-3087.
Co-APO-5	[Ru(bpy) ₃] ²⁺ -		2.3×10^{-3}	6.0	ACS Catal. 2013, 3, 1272-
	$Na_2S_2O_8$				1278
3 nm Co ₃ O ₄	$[Ru(bpy)_3]^{2+}$ -		1.9×10^{-3}	5.8	ACS Catal. 2013, 3, 383-
nanoparticles /SBA-	$Na_2S_2O_8$				388
15					

Table S4. TONs and TOFs for recently reported Co-based WOCs under photochemical water odixation

Figure S13. The UV-vis spectra of $[Ru(bpy)_3](ClO_4)_2$ -Na₂S₂O₈ solution in the lightdriven reaction (Above: no catalyst; Bottom: with 0.21 mM 700-CoO_x-C catalyst). Experimental conditions: 4.2 mM $[Ru(bpy)_3](ClO_4)_2$ and 68 mM Na₂S₂O₈; 100 W xenon lamp ($\lambda \ge 420$ nm), 0.1 M sodium phosphate buffer (pH 8.5), total solution volume 5 mL; The solution for UV-Vis test was diluted 10 times with NaPi buffer before measurement.

Figure S14. The PXRD patterns for -CoO_x-C catalyst before (red) and after (black) catalytic reaction.

Figure S15. Tafel plot of 700-CoO_x-C in 0.1 M KOH solution (scan rate: 5 mV s⁻¹).

Figure S16. Electrochemical impedance spectrum of -CoO_x-C and ZIF-67-Co₃O₄ recorded at 1.63 V vs. RHE in 0.1 M KOH.

Figure S17. The curve of chronopotentiometry for $700\text{-}CoO_x\text{-}C$ (~ 0.2 mg cm⁻²) on RDE (1500 rpm) at a constant current density of 10 mA cm⁻² in 0.1 M KOH solution (The indented shape of the curve is due to the formation and release of oxygen bubbles at the surface of Nafion-catalyst film).