Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Tunable mesoporous manganese oxide for high performance oxygen

reduction and evolution reactions

Islam M. Mosa^{1,2+}, Sourav Biswas¹⁺, Abdelhamid M. El-Sawy^{1,2}, Venkatesh Botu⁴, Curtis Guild¹,

Wenqiao Song¹, Rampi Ramprasad⁴, James F. Rusling^{1,3,5}, Steven L. Suib^{1,6*}

¹Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States ²Department of Chemistry, Tanta University, Tanta 31527, Egypt

³Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, United States

⁴University of Connecticut, Chemical and Biomolecular Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States

⁵School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland

⁶Institute of Materials Science, University of Connecticut, U-3060, 55 North Eagleville Rd., Storrs, Connecticut 06269, United States

⁺ I.M and S.B contributed equally

Chemicals

Manganese (II) nitrate tetrahydrate (Mn(NO₃)₂.4H₂O, \geq 97.0) cesium nitrate (CsNO₃, \geq 99.0), 1-butanol (anhydrous, 99.8%), and Poly (ethylene glycol)- block- Poly(propylene glycol)-block-Poly(ethylene glycol) PEO₂₀-PPO₇₀-PEO₂₀ (Pluronic P123), concentrated nitric acid (HNO₃, 68-70 %), manganese (III,IV,II) oxides (\geq 99.99), iridium chloride hydrate (IrCl₃.xH₂O), platinum on graphitized carbon 20% by weight, ruthenium(IV) oxide (RuO₂, 99.9 %), Nafion 117 solution (5 % in alcohol-water mixture), and potassium hydroxide (KOH, \geq 85 %) were purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

Catalyst Characterization

The powder X-Ray diffraction (PXRD) measurements were performed on a Rigaku Ultima IV diffractometer (Cu K α radiation, λ =1.5406 Å) with an operating voltage of 40 kV and a current of 44 mA. The PXRD patterns were collected over a 2θ range of 5–75° with a continuous scan rate of 1.0° min⁻¹. The nitrogen adsorption desorption experiments were performed with a Quantachrome Autosorb-1-1C automated adsorption system. The samples were degassed at 150°C for 6 h under helium prior to measurement. The surface areas were calculated using the Brunauer-Emmett-Teller (BET) method and the Barrett-Joyner-Halenda (BJH) method was used to calculate the pore sizes and pore volumes from the desorption branch of the isotherm. The surface morphology was determined by a Zeiss DSM 982 Gemini field emission scanning electron microscope (FE-SEM) with a Schottky emitter at an accelerating voltage of 2.0 kV having a beam current of 1.0 mA. High-resolution transmission electron microscopy (HR-TEM) experiments were carried out on a JEOL 2010 FasTEM microscope with an operating voltage of 200 kV. The samples were prepared by casting the suspension of material on a carbon coated copper grid. Tapping mode AFM was performed by loading the catalyst on a bare mica disc. Temperatureresolved in situ powder X-ray diffraction (TR-PXRD) analysis was done in an XTRA X-ray diffractometer (Cu Ka radiation) equipped with an Anton Parr XRK 900 heating chamber. The structural changes of the Cs-promoted MnOx and the non-promoted MnOx materials were investigated from 250°C to 650°C using a ramp rate of 5°C min⁻¹ under air. Diffraction patterns were obtained in the range of 5-75° 2θ at a scanning rate of 2.0° min⁻¹. X-ray photoelectron spectroscopy (XPS) was done on a PHI model

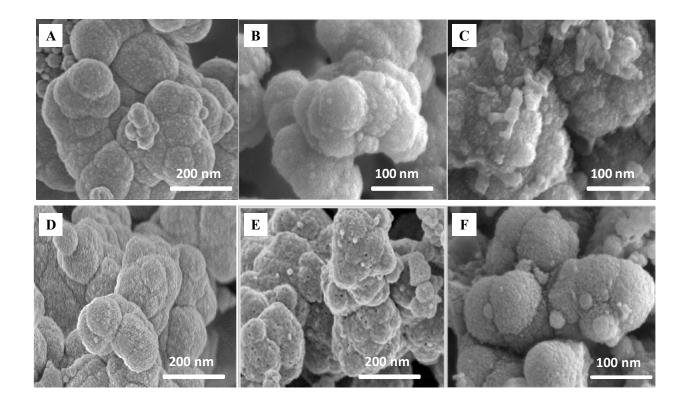
590 spectrometer with multiprobes (ΦPhysical Electronics Industries Inc.), using Al-K radiation (λ = 1486.6 eV) as the radiation source and fitted using CasaXPS software (version 2.3.12). The powder samples were pressed on carbon tape mounted on adhesive copper tape stuck to a sample stage placed in the analysis chamber. For correction of surface charging, the C 1s photoelectron line at 284.6 eV was taken as a reference. A mixture of Gaussian (70%) and Lorentzian (30%) functions was used for the leastsquares curve fitting procedure. The X-ray absorption near-edge spectra (XANES) and extended X-ray absorption fine structure (EXAFS) were measured at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab using beamline X18A. The synchrotron radiation energy was monochromatize using a Silicon (111) channel-cut double crystal monochromator. The incident and transmitted beam intensities were monitored using ionization chambers filled with a mixture of nitrogen and helium. The samples diluted by h-BN with a ratio of (1:8) were then pressed into pellets. The XANES data were analyzed with Athena software where background, post, and pre-edge corrections were made. The CO₂ chemisorption experiments were performed using a Quantachrome Autosorb-1-1C automated adsorption system. All the samples were heated in helium under vacuum at 150°C for 6 h prior to experiments. The adsorption studies were done at room temperature. 0°C, and -78°C.

Conversion of standard calomel electrode (SCE) to relative hydrogen electrode (RHE)

Since all electrochemical experiments were performed in 0.1 M KOH (pH = 13):

 $E^0 = 1.230 \text{ V} - 0.0591 \text{ (pH)}$

 $E^0 = 1.230 V - 0.0591 (13)$


Therefore,
$$E^0 = 0.463$$
 vs. RHE

Since the potential difference between SCE and RHE is 0.244 V, so

 $E^0 = 0.463 - 0.244 = 0.219$ vs. SCE

Overpotential (η) = Potential vs. SCE - 0.219 V

E vs. RHE = E vs. SCE + (1.23 - 0.219) = E vs. SCE + 1.01 V

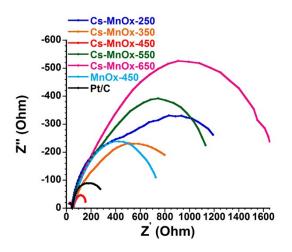
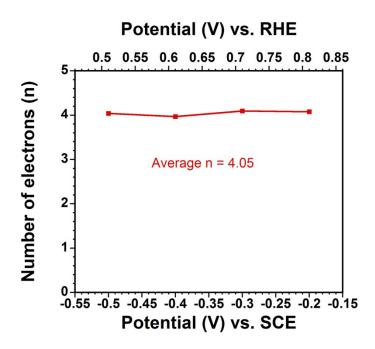


Fig. S1 FE-SEM images of Cs-MnOx materials calcined at (A) 250 °C, (B) 350 °C, (C) 400 °C, (D) 450 °C, (E) 550 °C and (F) 650 °C.

Sample ID	Heat	Surface area	Pore size	Pore volume
	treatment ^a	$(m^{2}/g)^{b}$	(nm) ^c	(cc/g) ^c
Cs-MnOx-250	250 °C for 3 h	79	3.4	0.10
Cs-MnOx-350	350 °C for 2 h	106	3.4	0.18
Cs-MnOx-450	450 °C for 2 h	86	4.9	0.18
Cs-MnOx-550	550 °C for 1 h	53	7.8	0.17
Cs-MnOx-650	650 °C for 1 h	13	NA	0.11

Table S1: Structural parameters of Cs promoted mesoporous manganese oxide samples


^aConsecutive heat treatment. ^bDetermined by BET method. ^cCalculated by BJH method from the desorption branch of the isotherms, NA stands for not applicable. All materials were heated at 150 °C for 12 h prior to the heating cycles.

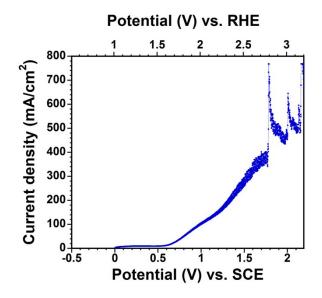

Fig. S2 Nyquist plots obtained from the electrochemical impedance spectroscopy measurements at an anodic polarization potential of - 0.15 V vs. SCE (0.86 vs. RHE).

Table S2. The exchange current density obtained from charge transfer resistance of the different studied catalysts towards ORR and OER. The EIS was measured at -0.15 V vs. SCE (0.86 V vs. RHE) for ORR, and 0.7 V vs. SCE (1.71 V vs. RHE) for OER.

Catalyst	ORR J _o (A cm ⁻²)	OER J _o (A cm ⁻²)
Cs-MnOx-250	4.6E-05	9.44E-02
Cs-MnOx-350	7.1E-05	1.52E-01
Cs-MnOx-450	3.7E-04	7.78E-01
Cs-MnOx -550	4.5E-05	1.08E-01
Cs-MnOx-650	2.5E-05	2.68E-02
MnOx-450	7.0E-05	2.84E-01
20 % wt. Pt/C	1.9E-04	N/A
20 % wt. Ir/C	N/A	1.05E+00

Fig. S3 The change in the number of electron transferred in ORR for the Cs-MnOx-450 at different potentials. The number of electrons was calculated from the slope of the K-L plots.

Fig. S4 LSV curve for Cs-MnOx-450 with extended potential window up to 2.2 V vs. SCE at a scan rate of 250 mV/s in 0.1 M KOH, showing ultra-high current.

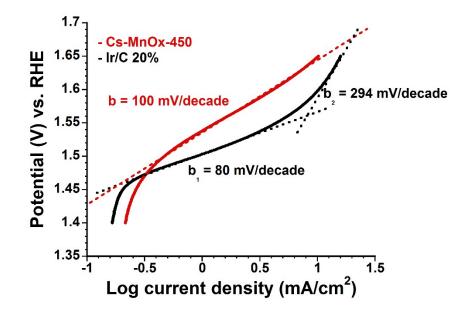


Fig. S5 Tafel plots for the OER of Cs-MnOx-450 as compared to the highly active Ir/C electrocatalyst.

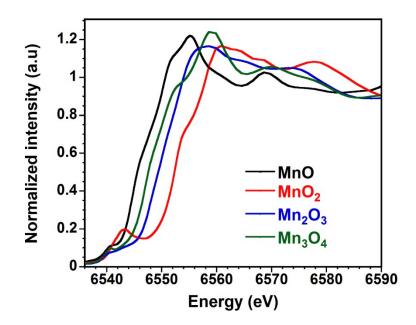
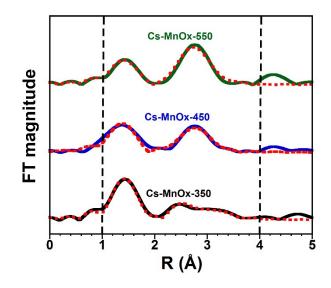
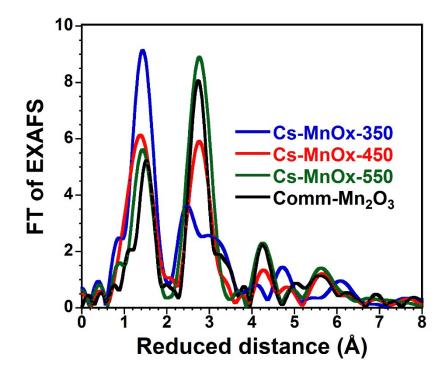




Fig. S6 Mn K edge XANES spectra of the different standard manganese oxides.

Fig. S7 The k3 weighted Fourier transforms of the Mn K-edge EXAFS spectra for samples calcined at 350 °C to 550 °C. Solid line represent experimental data, and dashed line represent EXAFS theoretical model of bixbyite.

Fig. S8 *Ex situ* EXAFS of Cs-MnOx samples calcined at 350-550 °C compared to commercial non-porous Mn₂O₃.

Sample	Path	Ν	R [Å]	σ^2 [Å ²]	$E_0 [eV]$
Cs-MnOx-350	Mn-O	3	1.88	0.00208	
	Mn-Mn	3	2.91	0.01324	
	Mn- Mn	3	3.46	0.00878	-1.88
Cs-MnOx-450	Mn-O	3	1.87	0.00525	
	Mn-Mn	3	3.05	0.01002	
	Mn- Mn	3	3.46	0.01276	-6.08
Cs-MnOx-550	Mn-O	3	1.90	0.00736	
	Mn-Mn	3	3.05	0.00525	
	Mn- Mn	3	3.53	0.00707	-4.93

Table S3: EXAFS fit results. Fit range in *R* space 1.0 Å to 4.0 Å; *k* range from 3 Å to 10 Å; $N_{idp} = 20$; $N_{free} = 9$; Bixbyite as theoretical model.

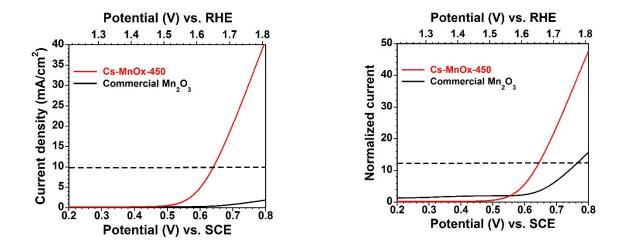
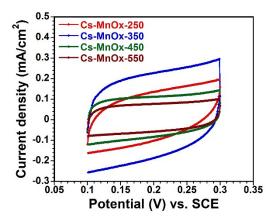


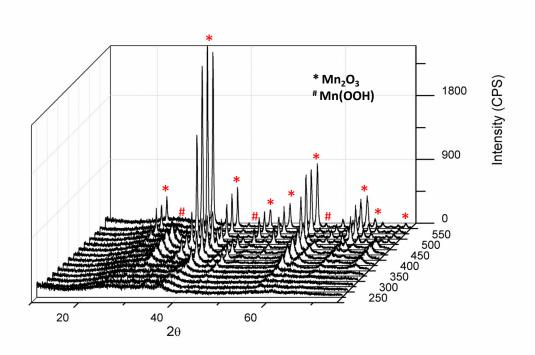
Fig. S9 Comparison of OER activity of Cs-MnOx-450 and commercial Mn₂O₃

Methodology for ECSA determination:

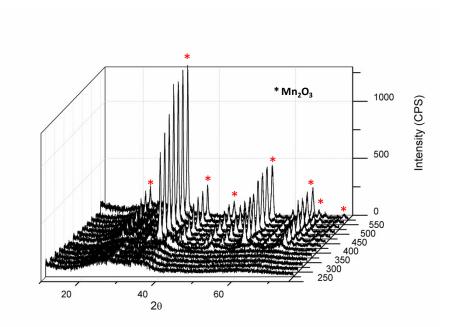
Catalysts were loaded to pyrolytic graphite electrodes as previously described. Cyclic voltammetry was performed at a slow scan rate of 5 mV/s in a potential range of 0.1 - 0.3 V vs, SCE where no faradaic redox reaction occurs. The capacitance was calculated from the rectangular CVs:

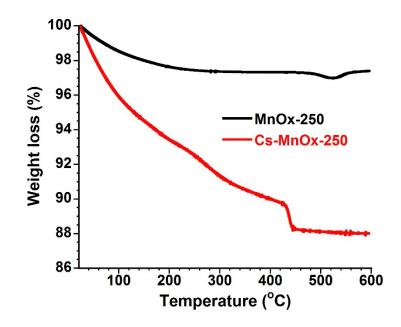

$$C_{device} = \frac{\int_{V_1}^{V_n} i(V_2 - V_1)}{\upsilon X \Delta E}$$

where *i*, V_1 , V_2 , υ and ΔE are the measured current, the starting voltage, the ending voltage, the scan rate, and the operating potential window.


Table S4: ECSA of Cs-MnOx at different calcination temperatures ^a
--

Catalyst	Capacitance (mF/cm ²)	Aechem (m ² /g)
Cs-MnOx-250	22	0.13
Cs-MnOx-350	41	0.24
Cs-MnOx-450	20	0.12
Cs-MnOx-550	13	0.08


^aThe electrochemical active surface area can be calculated from the capacitance using an approximation of 60 μ F/cm² for a full monolayer of catalyst.


Fig S10 Cyclic voltammograms of the Cs-MnOx materials calcined at different temperatures in 0.1 M KOH at 5 mV/s.

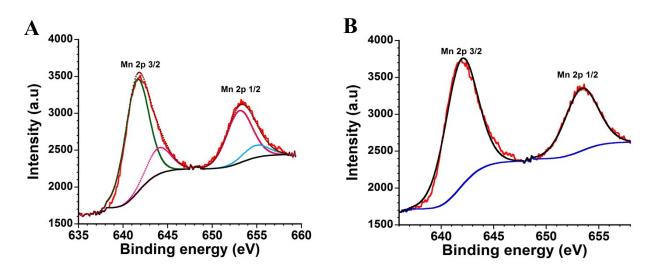

Fig. S11 The temperature resolved powder X-ray diffraction (TR-XRD) MnOx material under air. The material was calcined at 150 °C for 12 h and 250 °C for 3 h prior to measurement.

Fig. S12 The temperature resolved powder X-ray diffraction (TR-XRD) Cs-MnOx material under air. The material was calcined at 150°C for 12 h and 250°C for 3 h prior to measurement.

Fig. S13 The thermogravimetric analysis of Cs-MnOx and MnOx materials under air. Both of the materials were calcined at 150 °C for 12 h and 250 °C for 3 h prior to measurement.

Fig. S14 XPS analysis of Mn 2p spectra of (A) MnOx-450 and (B) Cs-MnOx-450 materials. The MnOx material shows the presence of Mn^{3+} along with Mn^{4+} valency (Mn^{3+}/Mn^{4+}), whereas Cs-MnOx shows the presence of only Mn^{3+} species.

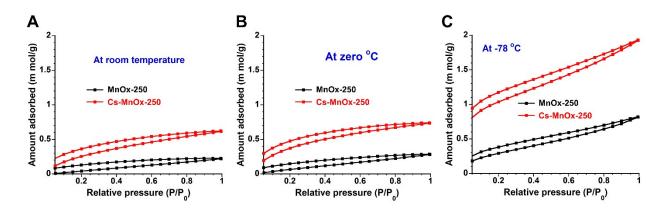


Fig. S15 The CO₂ adsorption of Cs-MnOx and MnOx materials calcined at 250 °C for 3 h at (A) RT, (B) 0 °C and, (C) -78 °C.

Density Functional Theory (DFT) study

Model Details and Methods

Model calculations were performed with density functional theory (DFT) as implemented in the VASP code. The semi-local (PBE) exchange-correlation approximation with a cutoff energy of 500 eV captured the valence O 2s, 2p and Mn 3p, 3d, 4s states. Electron-core interactions were treated by projector-augmented (PAW) potentials, and all calculations were spin polarized.

Surface stability for the 3 cases was measured by the surface energy:

$$\gamma = \frac{E_{surface} - n_{Mn} E_{bulk}^{Mn0x} - (x * n_{Mn} - n_0) \mu_0}{2A}$$

$$\mu_0 = \frac{1}{2}E_{02}$$

Where, γ is the surface energy, $E_{surface}$ and E_{bulk}^{Mn0x} are the total energy of the surface and bulk MnOx models, n_i is the number of atoms of element i, μ_0 is the oxygen chemical potential and A is the total area of the slab. The factor of 2 in the denominator arises due to the symmetric nature of the slab created.

Using ORR mechanism mentioned in main text, the binding of the key adsorbates, namely, H* and OH* were studied on the three different surfaces, with their stabilities represented by binding energies (Table S4, Fig. S14).

$$E_{Bind} = \frac{E_{surface}^{adsorbate} - E_{surface}^{clean} - n_{ads}E_{adsorbate}}{n_{ads}}$$
(5)

where $E^{adsorbate}_{surface}$ and $E^{clean}_{surface}$ are the total energies of a surface with and without an adsorbate. $E_{adsorbate}$ is the energy of an individual adsorbate while, n_{ads} is the total number of adsorbate molecules on the surface. Irrespective of the surface termination, the OH* and H* adsorbates bind to the surfaces and give no indication of preferred dissociation surfaces. To further probe dissociation preference, we determined the ΔH_{rxn} (ΔH for reactions 2-4) for the 3 oxide surfaces (Table S5) using density functional theory (DFT) computations.

Binding Species	MnO [200]	Mn ₂ O ₃ [222]	MnO ₂ [110]
ОН	-2.59	-2.8	-2.27
Н	-1.61	-2.64	-3.05

Table S4: Binding energy of OH and H on MnOx terminated surfaces

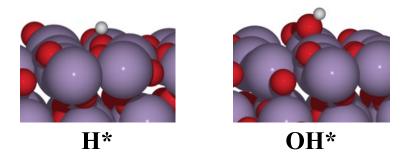


Fig. S16. Model of H* and OH* adsorbate species on Mn₂O₃ surface

Table S5. Heat of Reaction for OER on the MnO_x terminated surfaces

Reaction	MnO [200]	Mn ₂ O ₃ [222]	MnO ₂ [110]
ΔH_1	3.94	2.91	2.5

ΔH_2	-2.49	-1.67	-0.73
ΔH_3	2.59	2.8	2.27

Table S6. Summary of the ORR activities of different manganese oxide electro-catalysts from the current study and the literature in alkaline medium (KOH).

Catalyst	E _j (V vs. RHE) @ -3 mA/cm ^{2 a}	E _{1/2} (V vs. RHE) ^b	Ref	
Cs-MnOx-450	0.87 0.88		In this work	
MnOx-450	0.64	0.79	In this work	
Pt/C 20%	0.84	0.85	In this work	
Manganese oxide Octahedral Molecular Sieve	0.82	0.81	1	
MnOx nanowire on Ketjen black at 3200 rpm	~ 0.81	N/A	2	
MnO-mesoporous nitrogen-doped carbon	0.79	0.81	3	
CaMn ₃ O ₆	0.77	7 0.78		
H-MnO ₂ /C	N/A	0.77	5	
α-MnO ₂ -SF	0.76	0.79	6	
Ni-α-MnO ₂ -SF	0.75	0.81	6	
α-MnO ₂ -HT	0.74	0.77	6	

N-Graphene/MnO _x	0.73	N/A	7
Mn ₂ O ₃ by atomic layer deposition	0.71	N/A	8
α-MnO ₂ nanocrystal	0.7	0.73	9
Amorphous MnO _x	0.67	0.69	6
MnO _x -Graphene Oxide	0.6	N/A	10
β-MnO ₂	0.52	0.71	6
δ-MnO ₂	0.56	0.67	6
Thin film MnOx	0.73	N/A	11

^a is the potential (V) vs. RHE measured at a current density of -3 mA/cm².
^b is the half wave potential (V) vs. RHE.
All potentials were listed relative to the relative hydrogen electrode to facilitate the comparison. N/A stands for not applicable.

Catalyst	E _j @ 10 mA/cm ² a	Overpotential η (V) @ 10 mA/cm ²	Mass activity $(A/g)^{b}$ (a) $\eta = 0.45$ V	TOF (s ⁻¹) \hat{a} $\eta = 0.45 \text{ V}$	ΔE (oer- orr) (V)	Ref
Cs-MnOx-450	1.65	0.42	49	0.021	0.78	In this work
MnOx-450	1.72	0.49	7.8	0.003	1.08	In this work
Ir/C 20%	1.59	0.36	62	0.160	0.95	In this work
RuO ₂	1.6	0.37	57	0.023	N/A	In this work
Pt/C 20%	2.01	0.78	< 1	N/A	1.17	In this work
α-MnO ₂ -HT	1.72	0.49	17.7	0.004	0.97	6
Ni-α-MnO ₂ -SF	1.74	0.51	23.4	0.003	1.00	6
MnO by ALD	1.84	0.61	N/A	N/A	N/A	8
Mn ₂ O ₃ by ALD	1.81	0.57	N/A	N/A	1.1	8
Amorphous MnO _x	1.82	0.59	8.5	0.002	1.15	6
β-MnO ₂	1.83	0.60	5.7	0.001	1.31	6
δ-MnO ₂	1.97	0.74	4.2	0.001	1.41	6
MnCo ₂ O ₄	> 1.65	> 0.42	N/A	N/A	N/A	12

Table S7. Summary of the OER activities of different manganese oxide electro-catalysts from the current study and the literature compared to noble metal catalysts in alkaline medium.

^a Potential (V) vs. RHE measured at a current density of 10 mA/cm². ^bMass activity at $\eta = 0.45$ V, ^cTurn over frequency at $\eta = 0.45$ V((See experimental section for calculations of mass activity and TOF), ^dPotential difference between OER at 10 mA/cm² and ORR at -3 mA/cm².

References

- 1. A. M. El-Sawy, C. K. King'ondu, C.-H. Kuo, D. A. Kriz, C. J. Guild, Y. Meng, S. J. Frueh, S. Dharmarathna, S. N. Ehrlich and S. L. Suib, *Chem. Mater.*, 2014, **26**, 5752-5760.
- 2. J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu and J. Cho, *Nano Lett.*, 2011, **11**, 5362-5366.
- 3. Y. Tan, C. Xu, G. Chen, X. Fang, N. Zheng and Q. Xie, Adv. Funct. Mater., 2012, 22, 4584-4591.
- 4. X. Han, T. Zhang, J. Du, F. Cheng and J. Chen, *Chem. Sci.*, 2013, 4, 368-376.
- 5. T. Zhang, F. Cheng, J. Du, Y. Hu and J. Chen, Adv. Ener. Mater., 2015, 5, n/a-n/a.
- 6. Y. Meng, W. Song, H. Huang, Z. Ren, S. Y. Chen and S. L. Suib, *J. Am. Chem. Soc.*, 2014, **136**, 11452-11464.
- 7. T. Lee, E. K. Jeon and B.-S. Kim, J. Mater. Chem. A, 2014, 2, 6167-6173.
- 8. K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo and S. F. Bent, *Adv. Ener. Mater.*, 2012, **2**, 1269-1277.
- 9. Y. Ma, R. Wang, H. Wang, J. Key and S. Ji, J. Power Sources, 2015, 280, 526-532.
- 10. J. W. D. Ng, Y. Gorlin, D. Nordlund and T. F. Jaramillo, *J. Electrochem. Soc.*, 2014, **161**, D3105-D3112.
- 11. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 12. Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier and H. Dai, *J. Am. Chem. Soc.*, 2012, **134**, 3517-3523.