Electronic Supplementary Information

One-Step Electrochemical Synthesis of Tunable Nitrogen-Doped Graphene

Fengliu Lou, Marthe Emelie Melandsø Buan, Navaneethan Muthuswamy, John Charles Walmsley, Magnus Rønning and De Chen*

Table of contents

- S1 AFM and TEM images of C-Graphene
- S2 Manipulating the properties of nitrogen-doped graphene
- S3 Bonding configurations of C, N and O for C-Graphene and N-Graphene
- S4 Stability of C-Graphene and N-Graphene in different solvents
- S5 Catalytic performances of C-Graphene and N-Graphene towards ORR

References

S1 AFM and TEM images of C-Graphene

Fig. S1 a) Typical AFM image of C-Graphene with a height profile (blue curve) taken along the red line. The sample was prepared by spin coating of C-Graphene suspension on freshly cleaved mica. b) The thickness distribution of about 80 pieces of C-Graphene sheets obtained from the AFM height profile. c) Typical bright field TEM image of C-Graphene. d) High-resolution TEM image of C-Graphene. The upper right inset is a FFT of the whole image. The lower right inset is the zoom-in high-resolution TEM image.

S2 Manipulating the properties of nitrogen-doped graphene

Table S1 The effect of electrolyte compositions on the elemental composition of the graphene obtained.*

NH ₃ •H ₂ O /(NH ₄) ₂ SO ₄	Electrolyte composition, M			Element	tal comp	osition	of
concentration in the				graphene obtained, at%			
electrolyte, M							
	NH ₃ •H ₂ O	$\mathrm{NH_{4}^{+}}$	OH-	С	0	Ν	
0.0/1.0	1.00*10 ⁻⁷	2.00	9.00×10 ⁻¹³	91.83	8.17	0.00	
0.5/1.0	0.50	2.00	4.50×10-6	86.70	11.34	1.96	
1.0/1.0	1.00	2.00	9.00×10 ⁻⁶	86.58	10.80	2.62	
2.0/1.0	2.00	2.00	1.80×10-5	83.83	12.50	3.63	
5.0/1.0	5.00	2.00	4.50×10-5	83.40	11.66	4.95	
1.0/0.5	1.00	1.00	1.80×10-5	84.35	13.00	2.66	
1.0/0.2	1.00	0.40	4.50×10-5	83.63	13.87	2.49	
0.5 M KOH + 1 M	0.50	2.00	6.00×10-6	88.07	10.10	1.83	
(NH ₄) ₂ SO ₄							

* The exfoliation was carried out by applying 7.5 V voltage at 25 °C.

Fig. S2 a) Thermogravimetric analysis curve of N-Graphene. b) *in situ* mass spectrum of NH_3 from N-Graphene. Thermogravimetric analysis experiment was carried out on a STA 449 C analyzer (Netzsch, Germany) at a heating rate of 10 °C min⁻¹ under argon flow (80 sccm). An *in situ* mass spectrometer was connected to the STA 449 C analyzer to investigate the composition of the exhaust gas.

The graphene samples were dried at 120 °C for 24 hours under vacuum before thermogravimetric analysis and XPS test. The evolution of NH_3 finished before 190 °C, while the weight loss of N-Graphene up to 190 °C is only 0.41 wt%. According to the XPS results, the nitrogen content in N-Graphene is about 5.5 wt%. Therefore, the error of XPS results due to the physically absorbed NH_3 is less than 6.1%. This is an acceptable error. Therefore, the nitrogen contents obtained from XPS are reliable.

Fig. S3 The effect of electrolyte compositions on the nitrogen configurations. N 1s spectra of nitrogen-doped graphene obtained in electrolytes with different $NH_3 \cdot H_2O$ concentrations (a) and corresponding relative contents of different nitrogen configurations (b). N 1s spectra of nitrogen-doped graphene obtained in electrolytes with different SO_4^{2-} concentrations (c) and corresponding relative contents of different nitrogen configurations (d).

Temperature, °C	C, at%	O, at%	N, at%
25	83.46	12.43	4.12
60	81.91	9.51	8.58

Table S2 The effect of exfoliation temperatures on the elemental composition of the graphene obtained.*

* The exfoliation was carried out by applying 15 V voltage using 5M NH₃•H₂O and 1M (NH₄)₂SO₄ mixed aqueous solution as electrolyte.

Fig. S4 The effect of exfoliation temperatures on the nitrogen configurations. N 1s spectra of nitrogen-doped graphene obtained with different exfoliation temperatures (a) and corresponding relative contents of different nitrogen configurations (b).

Applied voltage, V	C, at%	O, at%	N, at%
4	91.61	4.35	4.03
7.5	83.40	11.66	4.95
15	83.46	12.43	4.12

Table S3 The effect of exfoliation voltages on the elemental composition of the graphene obtained.*

* The exfoliation was carried out by utilizing 5M $NH_3 \cdot H_2O$ and 1M $(NH_4)_2SO_4$ mixed aqueous solution as electrolyte at 25 °C.

Fig. S5 The effect of exfoliation voltages on the nitrogen configurations. N 1s spectra of nitrogendoped graphene obtained with different exfoliation voltages (a) and corresponding relative contents of different nitrogen configurations (b).

The concentration of $NH_3 \cdot H_2O$ in the electrolyte affects both the nitrogen doping level and nitrogen atom configurations in obtained graphene (Table S1 and Fig. S3). The increase of $NH_3 \cdot H_2O$ concentration increases the nitrogen content and reduces the relative content of graphitic nitrogen, but has little effect on the oxygen content. The concentration of SO_4^{2-} has no clear effect on the nitrogen contents and binding configurations but can affect the exfoliation rate obviously. Moreover, the nitrogen content can be significantly increased at high exfoliation temperature (Table S2). The exfoliation voltage has no obvious effect on the nitrogen contents and nitrogen configurations, but the oxygen content can be reduced at lower exfoliation voltage at the expense of reduced exfoliation rate (Table S3 and Fig. S5). Therefore, the properties of nitrogen-doped graphene, such as nitrogen contents, nitrogen binding configurations and oxygen contents, can be manipulated by carefully tuning the exfoliation conditions.

S3 Bonding configurations of C, N and O for C-Graphene and N-Graphene

Fig. S6 High-resolution C 1s XPS spectra of C-Graphene and N-Graphene.

The high-resolution C 1s spectra can be deconvoluted into four components: peak I (284.6 eV), graphitic carbon; peak II (286.1-286.3 eV), carbon in phenolic, alcohol, ether or C=N groups; peak III (288.4-288.9 eV), carbon in ketone, quinone, carboxyl, ester or C-N group; peak IV (290.5-291.2 eV), carbon in carbonate groups and/or adsorbed CO and CO₂ (Fig. S5).^[1-4] Peak I of N-Graphene is obviously weaker than that of C-Graphene (Table S4), indicating that nitrogen incorporation results in more defects. The relative strength of peak II is greater in N-Graphene (Table S4) and this is consistent with incorporation of nitrogen into the graphene structure and the formation of C=N bonds.

Sample	Contents, at%				Relative contents, %			
	Peak I	Peak II	Peak III	Peak IV	Peak I	Peak II	Peak III	Peak IV
C-Graphene	61.5	21.4	1.9	7.0	67.0	23.3	2.1	7.6
N-Graphene	39.6	33.8	3.8	6.2	47.5	40.5	4.6	7.4

Table S5 Contents of functional groups in N 1s from XPS spectra.

Sample		Contents, at%	0	Relative contents, %			
	Peak I	Peak II	Peak III	Peak I	Peak II	Peak III	
C-Graphene	-	-	-	-	-	-	
N-Graphene	2.4	2.2	0.3	49.3	45.3	5.4	

Table S6 Contents of functional groups in O 1s from XPS spectra.

Sample		Contents, at%	0	Relative contents, %		
	Peak I	Peak II	Peak III	Peak I	Peak II	Peak III
C-Graphene	3.4	3.1	1.7	41.4	37.6	21.0
N-Graphene	1.9	6.6	3.1	16.8	56.5	26.7

	C-Graphene			N-Graphene			
	Water	Ethanol	NMP*	Water	Ethanol	NMP	
Directly after centrifugation.	G.		Prove and a		Ī	Ī	
1 day		I		I			
10 days	IFAI						
100 days			T	V	ľ	P	

S4 Stability of C-Graphene and N-Graphene in different solvents

Fig. S7 Photographs of C-Graphene and N-Graphene in different solvents.

* N-Methyl-2-pyrrolidone

S5 Catalytic performances of C-Graphene and N-Graphene towards ORR

Fig. S8 a) RDE voltammograms of C-Graphene in 0.1 M oxygen saturated KOH at a scan rate of 10 mV s⁻¹ and various rotating rates. Koutecky-Levich plots of C-Graphene (b) and N-Graphene (c) at different electrode potentials.

Fig. S9 a) RDE voltammograms of nitrogen-doped graphene with different doping levels in 0.1 M oxygen saturated KOH at a scan rate of 10 mV s⁻¹ and a rotating rate of 1600 rpm. b) The electron transfer number of nitrogen-doped graphene with different doping levels as a function of potential. Graphene_0.0 (C-Graphene), Graphene_0.5, Graphene_1.0, Graphene_2.0, Graphene_5.0 (N-Graphene) were exfoliated in 1 M (NH₄)₂SO₄ mixed with 0, 0.5, 1.0, 2.0 and 5.0 M NH₃•H₂O, respectively, at 25 °C by applying 7.5 V voltage. The nitrogen doping levels of Graphene_0.0 (C-Graphene), Graphene_1.0, Graphene_2.0, Graphene_5.0 (N-Graphene), Graphene_0.5, Graphene_2.0, Graphene_5.0 (N-Graphene), Graphene_0.5, Graphene_1.0, Graphene_5.0 (N-Graphene), at 25 °C by applying 7.5 V voltage. The nitrogen doping levels of Graphene_0.0 (C-Graphene), Graphene_1.0, Graphene_2.0, Graphene_5.0 (N-Graphene), Graphene_0.5, Graphene_1.0, Graphene_5.0 (N-Graphene) are 0.00, 1.96, 2.62, 3.63 and 4.95 at%, respectively (Table S1).

Preparation method	Preparation	Nitrogen	Onset potential	Electron transfer	Ref.
	Т, °С	content,	V vs Ag/AgCl	number (potentials V vs	
		at%		Ag/AgCl)	
CVD*	1000	4	about-0.15	3.6-4.0 (-0.4 to-0.8)	Qu et al. ^[5]
Pyrolysis of GO and	800	7.86	-0.10	3.6-4 (-1.0 to -0.5)	Lin et al. ^[4]
urea					
Electrochemical	room T	1.3	<-0.20	3.4-3.7 (-0.40 to -0.55)	Gondosiswa
exfoliation of					nto et al. ^[6]
graphite in NH ₄ NO ₃					
solution					
Electrochemical	room T	3.3	-0.10	3.90-4.05 (-0.5 to -1.0)	Ma et al ^[7]
reduction of GO in					
NH ₃ •H ₂ O					
Treat GO with	90	6.0	-0.13	3.75 (-0.6)	Xing et al ^[8]
NH ₃ •H ₂ O					
Pyrolysis of GO and	950	5.7	about -0.18	about 3.42 (-0.6)	Xing et al ^[8]
melamine					
Annealing GO in NH ₃	600	6.8	about -0.18	about 3.23 (-0.6)	Xing et al ^[8]
CVD	800	4.95	-0.08	3.9 (-0.4)	Ito et al ^[9]
CVD	400 to 600	2.7	-0.20	3.5-4.0 (-0.4 to -0.6)	Yasuda et
					al ^[10]
CVD	400 to 600	2.0	-0.20	1.9-2.1 (-0.4 to -0.6)	Yasuda et
					$al^{[10]}$
Hydrothermal	180	7.78	about -0.15	2.6 (-0.5)	Zhang et
reaction					al ^[11]
Electrochemical	room T	4.95	-0.08	3.6-3.9 (-0.4 to -1.0)	This work
exfoliation of					
graphite in NH ₃ •H ₂ O					
and (NH ₄) ₂ SO ₄					
solution					

Table S7 Catalytic performance of nitrogen-doped graphene prepared by different methods.

* Chemical vapor deposition

References

[1] Z. R. Yue, W. Jiang, L. Wang, S. D. Gardner and C. U. Pittman Jr, Carbon 1999, 37, 1785.

[2] J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai and W.-K. Yuan, Carbon 2007, 45, 785.

[3] U. Zielke, K. J. Hüttinger and W. P. Hoffman, Carbon 1996, 34, 983.

[4] Z. Lin, G. Waller, Y. Liu, M. Liu and C.-P. Wong, Advanced Energy Materials 2012, 2, 884.

- [5] L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano 2010, 4, 1321.
- [6] R. Gondosiswanto, X. Lu and C. Zhao, Aust. J. Chem. 2015, 68, 830.
- [7] F.-X. Ma, J. Wang, F.-B. Wang and X.-H. Xia, Chem. Commun. 2015, 51, 1198.
- [8] T. Xing, Y. Zheng, L. H. Li, B. C. C. Cowie, D. Gunzelmann, S. Z. Qiao, S. Huang
- and Y. Chen, ACS Nano 2014, 8, 6856.
- [9] Y. Ito, H. J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki and M. Chen, Adv. Mater. 2014, 26, 4145.
- [10] S. Yasuda, L. Yu, J. Kim and K. Murakoshi, Chem. Commun. 2013, 49, 9627.
- [11] Y. Zhang, K. Fugane, T. Mori, L. Niu and J. Ye, J. Mater. Chem. 2012, 22, 6575.