Electronic Supplementary Information (ESI)

Highly efficient and stable quasi-solid-state Quantum dot-sensitized solar

cell based on superabsorbent polyelectrolyte

Wenliang Feng, Yan Li*, Jun Du, Wei Wang and Xinhua Zhong*

Fig. S1 Conductivity of electrolytes containing different weight ratio of PAAS with formula weight of 5000000 at 25°C.

Fig. S2 (a) J-V curves of CdSe sensitized solar cells based on polysulfide electrolyte containing different weight ratio of PAAS with formula weight of 30000000. (b) J-V curves of CdSe QDSCs based on the gel electrolytes with 15 wt% PAAS of 5000000 and 30000000 formula weight.

PAAS (wt%)	$J_{\rm sc}({\rm mA}\cdot{\rm cm}^{-2})$	$V_{\rm oc}\left({ m V} ight)$	FF (%)	PCE (%)
Liquid	15.84(15.93)	0.618(0.623)	65.56(66.01)	6.42±0.045(6.55)
5%	15.81(15.79)	0.621(0.627)	65.79(66.11)	6.46±0.031(6.55)
10%	15.62(15.79)	0.626(0.626)	66.31(66.19)	6.48±0.076(6.54)
15%	15.54(15.63)	0.625(0.631)	66.22(66.27)	6.43±0.057(6.54)
20%	15.05(15.11)	0.609(0.615)	63.91(64.77)	5.86±0.086(6.02)

Table S1 Photovoltaic parameters of CdSe sensitized solar cells based on the electrolytes

 containing different weight ratio of PAAS with 30000000 formula weight.

^a Average parameters and standard deviation based on 5 solar cells in parallel. The numbers in parentheses represent the values obtained for the champion cells.

Table S2 Photovoltaic parameters of CdSe QDSCs based on gel electrolytes with 15 wt%PAAS of 5000000 and 30000000 formula weight.

PAAS (Fw)	$J_{\rm sc}~({\rm mA}{\cdot}{\rm cm}{\cdot}^2)$	$V_{\rm oc}\left({ m V} ight)$	FF (%)	PCE (%)
30000000	15.54(15.63)	0.625(0.631)	66.22(66.27)	6.43±0.057(6.54)
5000000	15.47(15.71)	0.623(0.629)	66.41(66.37)	6.40±0.072(6.56)

^a Average parameters and standard deviation based on 5 cells in parallel. The numbers in parentheses represent the values obtained for the champion cells.

Fig. S3 EIS of CdSe sensitized L-QDSCs and G-QDSCs: (a) chemical capacitance C_{μ} ; (b) recombination resistance R_{rec} ; (c) Nyquist plots at -0.65 V forward bias (Inset: the equivalent circuit used to fit EIS).

Table S3 Simulated values of resistance (R) and capacitance (C) under the forward bias of -0.6 V of CdSe sensitized L- and G-QDSCs.

The cells	$R_{\rm s} \left(\Omega \cdot {\rm cm}^2 ight)$	$R_{\rm CE}(\Omega \cdot {\rm cm}^2)$	$R_{\rm rec} \left(\Omega \cdot { m cm}^2 ight)$	$C_{\mu} (\mathrm{mF}\cdot\mathrm{cm}^{-2})$	τ_{n} (ms)
L-QDSCs	2285	5.41	217	7.6	1649.2
G-QDSCs	22.40	4.89	234	8.1	1895.4

Fig. S4 Normalized V_{oc} , J_{sc} and FF variation of CdSeTe based L- and G-QDSCs under successive irradiation provided by an AM 1.5G solar simulator with intensity of 100 mW cm⁻² at room condition.

Fig. S5 Normalized V_{oc} , J_{sc} and FF variation of CdSe based L- and G-QDSCs under successive irradiation provided by an AM 1.5G solar simulator with intensity of 100 mW cm⁻² at room condition.