Supporting Information

SiO₂/TiO₂ Based Hollow Nanostructures as Scaffold Layers and Al-doping in Electron Transfer Layer for Efficient Perovskite Solar Cells

Juyoung Yun, Jaehoon Ryu, Jungsup Lee, Haejun Yu and Jyongsik Jang*

[*] Prof. Jyongsik Jang

School of Chemical and Biological Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea E-mail: jsjang@plaza.snu.ac.kr Tel.: +82-2-880-7069 Fax: +82-2-880-1604

Fig. S1. a) Schematic illustration of the synthesis of hollow nanoparticles. HR-TEM images of b) STCSNP, c) STHNP, d) THNP.

Fig. S2. a) STEM images of STHNP and elemental dot mapping of b) Ti, c) Si, d) O. e) STEM-EDS line mapping of STHNP.

Fig. S3. XRD analysis of a) STHNPs and THNPs, b) annealed perovskite films.

Fig. S4. Current density-voltage curve of perovskite solar cells based on silica, THNPs, and STHNPs. Photovoltaic parameters are summarized in the inset table.

Fig. S5. Current density-voltage curve of perovskite solar cells based on Al-doping concentration. Photovoltaic parameters are summarized in the inset table.

Fig. S6. Transmittance spectra of the TiO₂ and Al-TiO₂ compact layer.

The transmittance change of compact layer by Al-doping could effect on the current density of PSCs. Fig. S6 shows the transmittance spectra of TiO_2 and Al- TiO_2 compact layer. There was no change in the transmittance of compact layer after Al-doing (0.2-0.4 mol%) in TiO_2 .

Fig. S7. Hysteresis analysis of PSC based on STHNPs as scaffold layer and Al-TiO₂ compact layer. Photovoltaic parameters are summarized in the inset table.

Fig. S7 exhibits the *J-V* curve for PSC based on STHNPs as scaffold layer and Al-TiO₂ compact layer in forward and reverse scan mode with 0.35 V/s scan rate. The inset table summarizes the photovoltaic parameters. The forward scan showed 18.3 mA/cm² of *Jsc*, 0.96 V of *Voc*, 0.62 of *FF*, and 10.9 % of PCE. On the other hand, the reverse scan exhibited 18.3 mA/cm² of *Jsc*, 1.05 V of *Voc*, 0.71 of *FF*, and 13.6 % of PCE, respectively.

Table S1. Conductivity of TiO₂ and Al-TiO₂ compact layer.

	TiO ₂	Al-TiO ₂
Conductivity (S cm ⁻¹)	1.58×10^{-4}	2.74×10^{-4}

The conductivity of TiO_2 and Al-TiO_2 compact film was measured by 2-point measurement using two gold electrodes to confirm the enhancement of electronic properties.¹ The channel length and the width were 0.2 mm and 1 mm, respectively. Table S1 certifies that the Al-doping in TiO_2 increased the conductivity. This increase could improve the carrier transport.

Reference

1. H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen and Y. Yang, *J. Mater. Chem. A*, 2015, **3**, 9108-9115.