Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized from Iron-coordinated Aromatic Polymer Framework

Yong Zhao,^{ab} Kazuhide Kamiya,^b Kazuhito Hashimoto^{*},^b Shuji Nakanishi^{*b}

^aKey Lab for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, Henan Province, P. R. China.

^bDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. *e-mail: <u>hashimoto@light.t.u-tokyo.ac.jp</u>, <u>nakanishi@light.t.u-tokyo.ac.jp</u>

Figure S1

Figure S1 N₂ adsorption/desorption isotherm curves of Fe-PPDA polymers.

Figure S2

Figure S2 The XPS spectra of Fe-PPDA-1 and Fe-PPDA-2 polymers.

Figure S3 Original polarization curves of Fe-N_x/C-1 catalyst recorded in (a) alkaline medium (pH 13) and (b) acidic medium (pH 1) saturated with O_2 (black line) and Ar gas (red line).

Figure S4

Figure S4 The calculated electron transfer numbers (n) of different Fe-N_x/C materials and commercial Pt/C from Figure 2 with the following equation: $n=I_d/(I_d+I_r/N)$.

Figure S5

Figure S5 (a) the methanol tolerance effect and (b) stability test of $Fe-N_x/C-1$ catalyst in alkaline medium (pH 13).

Figure S6 The ORR stability test of Fe- $N_x/C-1$ catalyst in acidic medium (pH 1).

Table S1 The calculated ratios of Fe, Fe^{2+} , Fe^{3+} species and total Fe^{2+} and Fe^{3+} species in the Fe-N_x/C materials.

	Fe-N _x /C-1	Fe-N _x /C-2	Fe-N _x /C-3
Fe/(Fe+Fe ²⁺ +Fe ³⁺) (mol%)	6.4%	10.1%	15.3%
(Fe ²⁺ +Fe ³⁺)/(Fe+Fe ²⁺ +Fe ³⁺) (mol%)	93.6%	89.9%	84.7%
Total Fe species (mol%)	0.6%	0.1%	0.3%
Total (Fe ²⁺ +Fe ³⁺)species (mol%)	0.56%	0.09%	0.25%