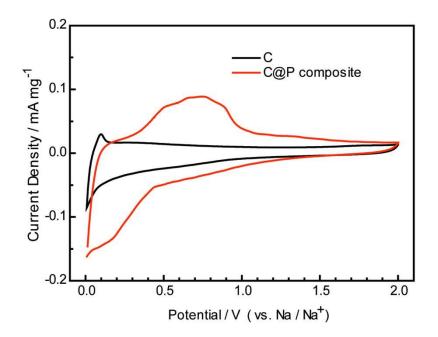

Electronic Supplementary Information for

Improving the electrochemical properties of red P anode in Na-ion batteries via the space confinement of carbon nanopores


Na Wu, ^{a,b,c} Hu-Rong Yao, ^{a,c} Ya-Xia Yin ^a and Yu-Guo Guo *a,c

^a Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190 (P. R. China)
^b College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016 (P. R. China)
^c University of Chinese Academy of Sciences (UCAS), Beijing 100049 (P. R. China)

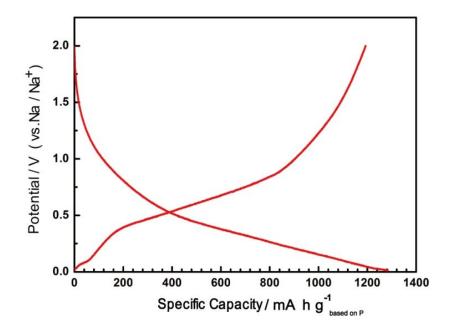

*Correspondence author. E-mail: ygguo@iccas.ac.cn

Figure S1. The XRD pattern of the (black) commercially available red phosphorus , (red) ketjen black and (blue) multiwalled carbon nanotube (MWCNTs) and (green) hierarchical porous carbon @red phosphorus composite.

Figure S2. cyclic voltammograms (CVs) measured under a scan rate of 0.1 mV s⁻¹ of (red) HPC@P composite electrode and (black) HPC electrode in SIBs.

Figure S3. Charge-discharge characteristics (based on red P) of hierarchical porous carbon @red phosphorus composite electrode in sodium ion battery at a current density of 25 mA g^{-1}