Electronic Supporting Information for

Micro-Mesoporous Iron Oxides with Record Efficiency for Decomposition of Hydrogen Peroxide: Morphology Driven Catalysis for Degradation of Organic Contaminants

K. J. Datta,^a M. B. Gawande,^a K. K. R. Datta,^a V. Ranc,^a J. Pechousek,^a M. Krizek,^a J. Tucek,^a R.

Kale,^b P. Pospisil,^b R. S. Varma,^c T. Asefa,^d G. Zoppellaro,^{*a} and R. Zboril^{*a}

^aRegional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.

^bDepartment of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.

^cSustainable Technology Division, National Risk Management Research Laboratory, US Environmental Protection Agency, MS 443, 26 West Martin Luther King Drive, Cincinnati, Ohio, 45268, United States.

^dDepartment of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, United States.

Corresponding author information:

Email address: radek.zboril@upol.cz (R. Zboril), Tel.: +420585634337, Fax: +420585634761 Email address: giorgio.zoppellaro@upol.cz (G. Zoppellaro), Tel.: +420585634950, Fax: +420585634761

Number of pages: 4 Number of figures: 6

Supporting Figures

Fig. S1 (a-c) TEM images of the FIO sample. (d) Higher magnification of the highlighted rectangular box shown in (c) indicating the mesoporous nature of the catalyst.

Fig. S2 FESEM image showing the morphological yield and the clear 3D organization of the FIO sample.

Fig. S3 (a) TGA of the as-prepared iron(II) oxalate precursor showing two-step decomposition corresponding to primary dehydration (mass loss of 19.8 wt %) and secondary oxidative decomposition to iron(III) oxide (34.5 wt %). (b) Evolved gas mass analysis of iron(II) oxalate precursor showing the liberation of CO, H_2O respectively.

Fig. S4 a) XRD pattern and FESEM image of the CIO sample.

Fig. S5 DLS size distribution of particles/aggregates in the CIO sample measured after 60 seconds (measurement 1) and 130 seconds (measurement 2) demonstrating a high tendency of CIO catalyst towards aggregation. The used concentration of 1 mg/mL, the same as for hydrogen peroxide decomposition.

Fig. S6 FESEM image of FIO sample after reusing it for three catalytic cycles against phenol degradation.