Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Hierarchical Three-Dimensional Mesoporous MnO₂ Nanostructure for High Performance Aqueous Asymmetric Supercapacitor

Sourav Bag and C. Retna Raj*

Functional Materials and Electrochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Fax: +91 3222-282252; Tel: +91 3222-283348 E-mail: crraj@chem.iitkgp.ernet.in

Asymetric supercapacitor electrodes

The mass ratio of the two electrodes in the asymmetric supercapacitor was calculated by following the charge balance of the electrode. The specific capacitance of the rGO from charge-discharge was calculated to be 122 F/g at a current density of 1 A/g.

To maintain the equal charge balance in both the electrode,

 $Q_{+} = Q_{-}$ $m_{+} \times Cs_{+} \times \Delta E_{+} = m_{-} \times Cs_{-} \times \Delta E_{-}$ $\frac{m_{-}}{m_{+}} = \frac{Cs_{+} \times \Delta E_{+}}{Cs_{-} \times \Delta E_{-}}$ $\frac{m_{-}}{m_{+}} = \frac{322 \times 1}{122 \times 1} = 2.63$

The mass ratio of the rGO and α -MnO₂ electrode is 2.63 in the ASC. The mass of the cathode electrode material (α -MnO₂) was kept ~0.8 mg. rGO (2.1 mg) was used in the anode for the ASC fabrication.

HRTEM images of the mesoporous α -MnO₂ nanostructure.

The lattice spacing of 4.9 Å, 3.5 Å, 3.1 Å, 2.5 Å in the HRTEM images corresponds to the (200), (220), (310), and (400) planes of α -MnO₂. These planes are also observed in the XRD profile of the mesoporous α -MnO₂ (Figure 3).

FESEM image of the MnO_2 nanostruture after 30 min and 1 hr of the reaction.

EDS profile of the sample (obtained at 15 min) corresponding to Figure 2(a-c).

	Element	Wt %	At %
Ka	C K	67.09	80.70
	O K	17.62	15.91
	ZnL	15.14	03.35
ZnLa	MnK	00.00	00.00
Ka	СиК	00.15	00.03

Raman spectral profile of α -MnO₂.

ESI-5

Energy dispersive X-ray spectroscopic (EDS) profile of mesoporous α -MnO₂ nanostructure.

Spectrum: Objects 55

El	AN	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error	(1 Sigma) [wt.%]
Mn O Au Zn	25 8 79 30	K-series K-series L-series K-series	28.42 19.26 6.24 1.51	50.67 36.77 10.91 1.64	28.53 68.75 1.73 0.98		0.78 2.27 0.22 0.07
		Total:	 57.22	100.00	100.00		

Cyclic voltammogram of mesoporous $\alpha\text{-}MnO_2$ electrode in 1 M Na_2SO_4 at a scan rate of 2 mV/sec.

Equivalent circuit used to fit the Nyquist plot shown in Figure 6c.

Plot illustrating the rate capability of the mesoporous α -MnO₂ electrode at different current densities.

The specific capacitance was calculated from charge-discharge experiments at different current densities. The electrode has >80% rate capability even at 20 A/g as shown in the above figure.

XRD pattern (A), FTIR spectra (B) and deconvoluted C1s XPS spectra of GO (C) and rGO (D).

The XRD profile and FTIR spectrum of GO and rGO in the ESI 9A,B confirm the reduction of GO. The deconvoluted C1s spectrum of rGO in the ESI 9D also reveals the successful removal of the oxygen containing functionalities in GO (ESI 9C).

Cyclic voltammogram obtained for rGO anode (A) and mesoporous α -MnO₂ cathode (B) in 1 M Na₂SO₄ at a scan rate of 100 mV/sec at different potential windows. The comparative voltammograms of the anode and cathode is shown in (C). All the voltammograms were acquired with three electrode electrochemical cell.

ESI-11

The repeated charge-discharge cycle of the asymmetric supercapacitor device, made by pairing of mesoporous MnO_2 and rGO electrode at a constant current density of 10 A g⁻¹.

Self-discharge profile of Asymmetric supercapacitor Devices made of three different amout of Zn containg α -MnO₂.

The ASC was charged at the current density of 1A/g for 5 minutes to completely charge. The self discharge profile was obtained at the open circuit potential of 2 V at room temperature. The self-discharge mechanism could be associated with the trace impurity present along with the electrode material (Electrochemical supercapacitor, B.E. Conway, electrochemical supercapacitor for energy delivery and storage, A.Yu, V. Chabot, J. Zhang).

Summary of literature on synthesis of porous MnO₂.

Reference	Synthetic procedure	Surface area BET (m ² g ⁻¹)
<i>Inorg. Chem.</i> 2006, 45 , 6404-6410	80 °C 6 h using Cu and KMnO ₄	132
J. Phys. Chem. C 2007, 111 , 19141- 19147	Hydrothermal treatment of KMnO ₄ and H ₂ SO ₄ solution for 12 hrs at 110°C .	108.6
<i>Nanotechnolgy</i> 2008, 19 , 185604-185611	Sol-gel method and followed by calcination	142.6
J. Phys. Chem. C 2008, 112 , 7270-7277	oxidation of the pyrochroite Mn(OH) ₂ by potassium persulfate K ₂ S ₂ O ₈ and addition of NaOH	20
<i>J. Phys. Chem. C</i> 2009, 113 , 14020– 14027	$MnSO_4$ solution was mixed with $K_2S_2O_8$ solution. NaOH solution was added dropwise, and dried for 24 hr .	135
<i>Cryst. Growth Des.</i> 2009, 9 , 528	Hydrothermal method, K ₂ S ₂ O ₈ and MnSO ₄ in presence of sulfuirc acid, 110 °C 6 h	-
J. Phys. Chem. C 2010, 114 , 2694–2700	Using SBA-15 as a template , Mn(NO ₃) ₂ solution was irradiated with ultrasound followed by annealing	266
<i>Electrochim. Acta</i> 2010, 55 , 5117–5122	KMnO ₄ was reacted with CNTs or mesoporous carbon for 12 hr at 120°C	81
<i>J. Phys. Chem. C</i> 2011, 115 , 5413–5421	KMnO ₄ was mixed with ascorbic acid and then calcined	222
Electrochem. Solid State Lett., 2012, 15 , A57-A59	CTAB was used as a soft template and KMnO ₄ was reacted with Mn(OOCCH ₃) ₂	178
<i>Cryst. Eng. Comm.</i> , 2012, 14 , 4196	Hydrothermal, KMnO ₄ 150-200 °C, 24 h	8.511
ACS Appl. Mater. Interfaces 2012, 4 , 2769–2774	Different nanostructures using carbon template and hydrothermal approach at high temperature	90
<i>J. Power Sources</i> 2013, 243 , 676-681	Electrodeposition on Ni foam	-
ACS Appl. Mater. Interfaces 2014, 6 , 9776 –9784	MnSO ₄ and KMnO ₄ was mixed in CH ₂ Cl ₂ /H ₂ O and kept for 2 days and then dried and calcined.	219.3
<i>J. Power Sources</i> 2014, 270 , 411	KMnO ₄ , mannitol, 80 °C	199
<i>J. Power Sources</i> 2015, 280 , 526-532	KMnO ₄ and MnSO ₄ in Teflon lined autoclave for 14 hr at 140°C	93.4
<i>J. Power Sources</i> 2015, 277 , 36-43.	Ni foam template and KMnO ₄ solution was sealed the autoclave and maintained at 160 °C for 24 h	236.8
This work	Room temperature reduction of KMnO ₄ by Zn within 2 h	206

Specific capacitance and conductivity dependence on the amount of Zn and Zn(II) ions on MnO_2 .

Three types of MnO_2 samples were prepared using three different amount of metallic Zinc powder and the amount of Zinc was measured by EDAX.

The conductivity and sheet resistance were obtained from the resistivity by using the following equation:

Conductivity (σ) = 1/ Resistivity (ρ)

Sheet resistance (Rs) = Resistivity (ρ)/ thickness of film (t)

Sample	Atomic % of Zn	Resistivity (ohmcm)	Conductivity (S/cm)	Sheet resistance (kohm/□)	Specific capacitance (Fg ⁻¹)**	Cycle performance #
MnO ₂ 1	0.42	8.95 × 10 ³	1.12 × 10 ⁻⁴	2.13	254	87% after 8000 cycles
MnO ₂ 2	0.98	1.37×10^{3}	7.29 × 10 ⁻⁴	0.65	322	90 % after 8000 cycles
MnO ₂ 3	1.85	1.13 × 10 ³	8.85 × 10 ⁻⁴	0.51	311	88% after 8000 cycles

** current density = 1 A/g (obtained with three-electrode system)

[#] current density = 20 A/g

 $\label{eq:constructive} Electrochemical performances of the recent report on mesoporous/porous MnO_2 nanostructure towards supercapacitor electrode material.$

Reference	Specific	Electrolyte	Rate capability	Cycle
	capacitance			performance
Cryst Growth Des,	120 F g ⁻¹ at 5	$1 \text{ M Na}_2 \text{SO}_4$	75% at	-
2009, 9 , 528–533	mVs ⁻¹		200mVs ⁻¹	
Electrochim. Acta	232 Fg ⁻¹ at 5	1M Na ₂ SO ₄	87.4% at 10	92.6% after 500
2010, 55 , 5117–5122	mAcm ⁻²		mA/cm ²	cycle @ 5
				mA/cm ²
J. Phys. Chem. C 2011,	200 Fg ⁻¹ at 6.0	0.5M	-	-
115 , 5413–5421	mA cm ⁻²	Na_2SO_4		
ACS Appl. Mater.	266.8 Fg-1 at 1	$1 \text{ M Na}_2 \text{SO}_4$	62% at 10Ag-	-
Interfaces 2012, 4,	A/g		1	
2801-2810				
ACS Appl. Mater.	461 Fg ⁻¹ at 5	1 M Na ₂ SO ₄	53.79% at	~99.99% after
Interfaces 2012, 4,	mV/s		100mV/s	3000 cycle @ 5
2769-2774				Ag-1
Nanoscale, 2012, 4, 807	218 F g ⁻¹ at 0.1	$1 \text{ M Na}_2 \text{SO}_4$	-	-
	$A g^{-1}$			
Electrochem. Solid State	297 F g-1	0.1 M	-	95 % after 200
Lett., 2012, 15, A57-	_	Mg(ClO4)2.		cycles @ 0.5
A59				mA
J. Power Sources 2013,	201 F/g at 1	$1 \text{ M Na}_2 \text{SO}_4$	48% at 20 Ag-	65% after 1800
243 , 676-681	A/g		1	cycles @ 5Ag ⁻¹
<i>Sci. Rep.</i> 2014, 4 , 3878;	365 F g ⁻¹ at	$1 \text{ M Na}_2 \text{SO}_4$	55.53% at 10	90.4% after
	0.25 Åg ⁻¹		Ag ⁻¹	3000 cycle @
				5Ag ⁻¹
<i>Nano Energy</i> 2014, 4 ,	292 F/g at 2.5	$1 \text{ M Na}_2 \text{SO}_4$	49% at 8 A/g	76% after 3000
39–48	A/g		_	cycle at 5A/g
	-			
ACS Appl. Mater.	309 F/g, 5	$1 \text{ M Na}_2 \text{SO}_4$	16% at	~25% after
<i>Interfaces</i> 2014, 6 ,	mV/s		100mV/s	5000 cycles (a)
17637-17646				5 Å/g
J. Power Sources 2014,	180 F g ⁻¹ at	$1 \text{ M Na}_2 \text{SO}_4$	~65% at	~99% after 10,
270 , 411-417	2mV/s		50mV/sec	000 cycle @
				10mVs ⁻¹
This work	322 Fg ⁻¹ at 1	1 M Na ₂ SO ₄	80% at	> 90% after
	Ag-1		20 Ag ⁻¹	8000 cycle @
				20 A/g

Table summarizing the energy and power density of the MnO_2 based asymmetric supercapacitor device.

Article	Supercapacitor device details	Energy density	Power density
<i>Appl. Phys. A</i> , 2006, 82 , 599–606.	Activated carbon/MnO ₂ device in K ₂ SO ₄	15Wh/kg	1.2 kW/kg
<i>J. Phys. Chem. C</i> 2009, 113 , 14020–14027.	MnO ₂ //Activated carbon in Li ₂ SO ₄	28.4 Wh/kg,	0.15 kW/kg
<i>J. Power Sources</i> 2009, 194 , 1222–1225	NaMnO ₂ //Ac in 0.5 M Na ₂ SO ₄	19.5Whkg ⁻¹	130Wkg ⁻¹
ACS Nano 2010, 4 , 5835–5842.	Graphene MnO ₂ //Graphene in 1M Na ₂ SO ₄	7.0 Wh kg ⁻¹	5.0kW kg ⁻¹
<i>J. Power Sources</i> 2010, 195 , 2789–2794	K _{0.27} MnO ₂ ·0.6H ₂ O//AC in 0.5 M K ₂ SO ₄	25.3Whkg ⁻¹	140Wkg ⁻¹
ACS Nano 2010, 4 , 4403–4411.	MnO ₂ //CNT flexible solid device	25.5 Wh/kg	-
Nano Lett., 2011, 11 , 2905–2911.	GrapheneMnO ₂ //SWNT in 0.5 M Na ₂ SO ₄	12.5Wh/kg	-
<i>Adv. Funct. Mater.</i> 2011, 21 , 2366–2375.	Graphene/MnO ₂ //CAN in 1 M Na ₂ SO ₄	51.1 Wh kg ⁻¹	0.1022 kW kg - 1
Nanoscale 2012, 4 , 807–812.	MnO ₂ nanoflowers //Functional mesoporous CNTs in 1M Na ₂ SO ₄	47.4Wh kg ⁻¹	0.2 kWkg ⁻¹
ACS Appl. Mater. Interfaces 2012, 4, 2801–2810.	MnO ₂ // graphene hydrogel, in K ₂ SO ₄	23.2 Wh kg ⁻¹	1.0 kW kg ⁻¹ .
ACS Nano 2012, 6 , 4020–4028.	MnO ₂ /e-CMG film// Graphene in 1M Na ₂ SO ₄	44 Wh/kg	11.2 kW/kg
<i>J. Mater. Chem. C</i> , 2013, 1 , 1245–1251.	Graphene/MnO ₂ //graphene/Ag asymmetric.	50.8 W h kg ⁻¹	0.101kW Kg ⁻¹
Nano Lett. 2013, 13 , 2151–2157.	MnO ₂ //rGO hybrid planar flexible solid device	17 Wh/kg	2.52 kW/kg,
<i>Adv. Mater.</i> 2013, 25 , 4746–4752.	Bacterial cellulose (BC) - MnO ₂ //BC in 1 M Na ₂ SO ₄	32.91 W h kg ⁻¹	284.63 kW kg
This work	MnO ₂ //reduced graphene oxide in 1M Na ₂ SO ₄	35.28Wh/kg	2 kWh/kg