Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

ALD SnO₂ Protective Decoration Enhances the Durability of a Pt Based Electrocatalyst

Electronic Supplementary Information

ALD SnO₂ Protective Decoration Enhances the Durability of a Pt Based Electrocatalyst

Catherine Marichy^{a,b}, Giorgio Ercolano^c, Gianvito Caputo^{d, §}, Marc G. Willinger^e, Deborah Jones^c, Jacques Rozière^c, Nicola Pinna^{d,*}, Sara Cavaliere^{c,*}

a - LMI, CNRS UMR 5615, Université Lyon 1, 22 av. Gaston Berger - Bât. Berthollet, 69622 Cedex Villeurbanne, France.

b - Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

c - Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Agrégats Interfaces Matériaux pour l'Energie, Université de Montpellier, 34095 Montpellier Cedex 5, France. E-mail: sara.cavaliere@unimontpellier.fr

d - Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin, Germany. E-mail: nicola.pinna@hu-berlin.de

e - Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany

§ Current address: Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Table ESI.1. Particle distribution calculated over 200 particles for each sample from TEM analysis.

Sample	Size (nm)
Pt/CF before CV	2.3 ± 1.0
Pt/CF after CV	7.0 ± 4.7
SnO ₂ /Pt/CF before CV	2.5 ± 0.8
SnO ₂ /Pt/CF after CV	4.9 ± 2.4

ALD SnO₂ Protective Decoration Enhances the Durability of a Pt Based Electrocatalyst

Figure ESI.1. a) Dark field STEM and b) EDS images of uncoated Pt/CFs before cyclic voltammetry.

Element	at%	wt%
C (1s)	65	17.7
Pt (4f)	14.6	64.8
Sn (3d5)	4.3	11.6
O (1s)	16.1	5.9

Table ESI.2. Surface weight percentages of the various elements determined by XPS.

Figure ESI.2. ORR in a 0.5 M H_2SO_4 solution saturated with O_2 at 400, 900, 1600 and 2500 RPM for a) uncoated b) SnO_2 -coated carbon fibers.

Catalyst	Mass Activity [A/g _{Pt}]	
	0.85 V	0.9 V
Pt/CF	85.3	26.2
SnO ₂ /Pt/CF	135.4	30.7

Table ESI.3. ORR mass activities at the peak potential 0.85 V and 0.9 V.

 Table ESI.4. Comparison of the response to accelerated degradation test of the unprotected and

 SnO_2 decorated electrocatalysts.

Catalyst	ECSA [m ² /g _{Pt}]	Loss (%)
Pt/CF	8.3	69
SnO ₂ /Pt/CF	18.2	37