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Fig. S1. Low-magnification SEM images of sodium titanate thin films deposited on (a) nitrogen-

doped CNTs using 200 cycles, (b) Si (100) wafer using 400 cycles, and (c,d) AAO template 

using 200 cycles (top and cross-section views). The deposition was performed at 250 °C using 

ALD recipe of (NaOtBu-H2O) + (TTIP-H2O).

Fig. S2. FTIR spectra of (a) bare double-side polished Si wafer, (b) anatase TiO2 deposited by 

ALD at 225 °C, and (c) sodium titanate deposited by ALD at 225 °C on double-side polished Si 

wafer. The sharp peak located at 1460 cm-1 in (c) is attributable to the formation of Na-O bonds 

in the sodium titanate films [1]. The peak centered at 439 cm-1 in (b) is ascribed to Ti-O-Ti bonds 

typically observed in anatase TiO2 [2]. Disappearance of 439 cm-1 peak in (c) indicates the 

breaking of Ti-O-Ti bonds and formation of Na-O-Ti bonds in the sodium titanate films. Peaks 

from 605 cm-1 to 1105 cm-1 result from double-side polished Si wafer.
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Fig. S3. Selected-area electron diffraction (SAED) patterns of (a) sodium titanates as-deposited 

on CNTs at 225 °C, and (b) sodium titanates/CNTs annealed at 500 °C in air.

Fig. S4. Crystal structure of anatase TiO2 (top) and Na0.23TiO2 (bottom) viewed along the b-axis. 

Red spheres represent oxygen, blue spheres represents titanium ions, yellow spheres represent 

sodium ions, and blue polyhedrons represent the Ti – O octrahedra.
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Fig. S5. SEM images of sodium titanates (a,b) as-deposited at 225 °C, after annealing in air at 

(c,d) 500 °C, (e,f) 700 °C, and (g,h) 900 °C, respectively.

Fig. S6. Cross-section SEM image of sodium titanates deposited on Si wafer at 275 °C using 400 

ALD cycles.
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Fig. S7. Raman spectra of A-NaTiO and Na0.23TiO2. Raman bands below 278 cm-1 can be 

assigned to lattice modes and Na-O-Ti stretching vibration modes [3]; Raman bands between 

370 and 484 cm-1 can be assigned to framework of Ti-O-Ti vibrations [4]; Raman bands between 

632 and 683 cm-1 are due to the Ti-O-Ti stretch in edge-shared TiO6 [1, 3-5]; Raman band at 873 

cm-1 can be assigned to the symmetric stretch of short Ti-O bonds involving non-bridging 

oxygen atoms associated with sodium ions [1,4,5].

Fig. S8. XRD pattern of Na0.23TiO2/CNT composite prepared by annealing amorphous sodium 

titanates in argon gas for 10h.
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Fig. S9. (a) CV curve of pristine CNTs measured between 0.1 to 2.5V at a scanning rate of 0.1 

mV s-1; and (b) cycling performance of pristine CNTs at a current rate of 10 mA g-1.

Fig. S10. Discharge capacity of A-NaTiO/CNT and C-NaTiO/CNT composites at a current rate 

of 10 mA g-1.
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Fig. S11. TG results of A-NaTiO and C-NaTiO on CNTs as measured in air atmosphere at a 

heating rate of 30 ° min-1.

Fig. S12. Rate capability of A-NaTiO in this work in comparison with other types of sodium 

titanates reported in reference [1, 6-10]. At each current density, the discharge capacity of each 

sample was taken at the second cycle for comparison. 
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Fig. S13. Cycling stability of A-NaTiO/CNT electrodes prepared with acetylene black (AB) (A-

NaTiO/CNTs:PVDF:AB = 8:1:1) and without AB (NaTiO/CNTs:PVDF = 9:1) at a current 

density of 10 mA g-1.
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