Electronic Supporting Information (ESI) for

Silver-Inserted Zinc Rhodium Oxide and Bismuth Vanadium Oxide Heterojunction Photocatalyst for Overall Pure-Water Splitting under Red Light

Ryoya Kobayashi,^a Kazuki Kurihara,^b Toshihiro Takashima,^c Bunsho Ohtani,^d and Hiroshi Irie*^c

^a Special Doctoral Program for Green Energy Conversion Science and Technology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

^b Department of Applied Chemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

^c Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

^d Catalysis Research Center, Hokkaido University, Nishi 10, Kita 21, Sapporo 001-0021, Japan

Contents

- ESI. 1 Transmission spectra of AgNO₃ solution (0.1 mol/L) and Ce(SO₄)₂ solution (0.1 mol/L) (Fig. S1).
- ESI. 2 XPS analyses of ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Figs. S2, S3).
- ESI. 3 STEM ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Fig. S4).
- ESI. 4 EDS-based elemental analyses of ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Fig. S5).
- ESI. 5 Complementary water splitting tests (Fig. S6).
- ESI. 6 Complementary tests of half reaction of water (Fig. S7) and water-splitting (Figs. S8, S9).
- ESI. 7 Complementary data related to water splitting tests using GCMS (Table S1).
- ESI. 8 Energy band diagram of $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ and charge transfer processes (Scheme S1).

ESI. 1 Transmission spectra of AgNO₃ solution (0.1 mol/L) and Ce(SO₄)₂ solution (0.1 mol/L) (Fig. S1)

AgNO₃ solution is usually utilized when Ag⁺ is applied as the sacrificial agent because it is transparent to irradiated light with a wavelength above ~350 nm as shown in Fig. S1. In the present study, we utilized Ce(SO₄)₂ solution, which was yellowish and transparent, and it can be seen from Fig. S1 that the solution absorbs visible light up to a wavelength of ~550 nm. The Ce(SO₄)₂ solution has no absorption at the wavelengths of 610 and 700 nm of the used light for irradiation. Thus, the Ce(SO₄)₂ solution was an appropriate source of Ce⁴⁺ for the sacrificial agent in the present study.

Fig. S1 Transmission spectra of AgNO₃ solution (0.1 mol/L) and Ce(SO₄)₂ solution (0.1 mol/L).

ESI. 2 XPS analyses of ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Figs. S2, S3).

XRD peaks originated from Ag could not be detected, so we measured the Ag 3d XPS to confirm the existence and valency of Ag as shown in Fig. S2. In Fig. S2, the Ag 3d spectra of Ag and Ag₂O were also included. First, the spectrum of Ag was detected from the $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ photocatalyst, indicating the existence of Ag species. In addition, the valency of Ag in the photocatalyst was proved to be mainly zero (Ag⁰) and partially 1+ (Ag⁺, Ag₂O). The oxidized state (Ag⁺) is plausible because Ag was surrounded by oxides, $ZnRh_2O_4$ and $Bi_4V_2O_{11}$. In addition, the observation of the partially Ag⁺ might be the evidence that Ag is connected to $ZnRh_2O_4$ and $Bi_4V_2O_{11}$. So, we concluded that the Ag was inserted as the metallic one between $ZnRh_2O_4$ and $Bi_4V_2O_{11}$ by combining the STEM/EDS results in ESI. 3 and 4 later.

We evaluated the Ag content by XPS as shown in Figs. S3a-S3e, taking peak areas of Ag 3d, Zn 2p, Rh 3d, Bi 4f, and V 2s and their atomic sensitivity factors into considerations. As shown in Fig. S3e, the peak of V 2s was partially overlapped by that of Rh 3s, so the peak separation was employed and the peak area of V 2s was obtained. Then, Ag was included ~3 atomic percent. The ratio of Zn/Rh was 0.554, slightly deviated from the stoichiometric ratio of 0.5, however, that of Bi/V was 1.65, indicating that Bi vacancy was generated. We have already reported the Ag vacancy was produced after the HNO₃ treatment of ZnRh₂O₄/Ag/AgSbO₃, and ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-y} was formed. Similar phenomenon was proceeded in the present photocatalyst. It should be noted that the amount of generated Ag vacancy was so large that the XRD peaks of Ag_{1-x}SbO_{3-y} shifted to the lower angle compared to the non-treated AgSbO₃. In the present study, the XRD peak shifts were not observed before and after the HNO₃ treatment of Bi₄V₂O₁₁, so we depict the HNO₃-treated Bi₄V₂O₁₁ as simply Bi₄V₂O₁₁.

We have successfully removed Ag without forming deficiencies by the treatment with ammonia solution instead of HNO₃. The results will be reported elsewhere.

Fig. S2 Ag 3d XPS spectra of $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ photocatalyst (denoted as photocat.), commercially available Ag₂O and Ag. Those spectra were drawn after calibration with the C 1s peak, derived from a surface-contaminant hydrocarbon that had a binding energy of 284.5 eV.

Fig. S3 XPS spectra of $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$, (a) Ag 4d, (b) Zn 2p, (c)Rh 3d, (d) Bi4f, and (e) V2s. In (e), experimental XPS spectrum (black line), fitted curve (gray bold line), background curve (gray broken line), and component peaks of V 2s (red line) and Rh 3s (blue line) determined by deconvolution of the experimental XPS spectrum data. All spectra were calibrated with the C 1s peak, derived from a surface-contaminant hydrocarbon that had a binding energy of 284.5 eV.

ESI. 3 STEM ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Fig. S4).

STEM images (Figs. S4a and S4b) and EDS element maps (Figs. S4d–S4h) of Ag, Bi, Rh, V, and Zn, respectively, are shown for $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ after HNO₃ treatment (Fig. S4a is the same as Fig. 4a, but is rotated). Fig. S4c is the overlapped color image of Figs. S4d-S4h. Fig. S4b is the enlargement of Fig. S4a. As clearly seen in Fig. S4c, Ag particles are connected with both $ZnRh_2O_4$ and $Bi_4V_2O_{11}$ particles.

Fig. S4 STEM images (a and b) and EDS element maps (c-h) in which yellow (d), blue (e), red (f), blue-green (g), and purple (h) colors correspond to Ag, Bi, Rh, V, and Zn, respectively, for $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ after HNO₃ treatment. Fig. S4c is the overlapped color image of Figs. S4d-S4h. Fig. S4b is the enlargement of Fig. S4a.

ESI. 4 EDS-based elemental analyses of ZnRh₂O₄/Ag/Bi₄V₂O₁₁ photocatalyst (Fig. S5).

EDS-based elemental analysis results for ZnRh₂O₄/Ag/Bi₄V₂O₁₁ after HNO₃ treatment are shown in Figs. S5a– S5c (Fig. S5a is the same as Fig. 4a). The large particle in the middle and the small particles around the large particle correspond to Bi₄V₂O₁₁ and ZnRh₂O₄, respectively, as shown in Fig. S5a. Figure S5b shows the atomic percentages of Ag, Bi, V, Zn, and Rh measured along the line from the area of ZnRh₂O₄ (A₁) to that of Bi₄V₂O₁₁ (A₂), and Fig. S5c show those along the line from B₁ to B₂. In both cases, the atomic percentages of Zn and Rh decreased at the boundary of ZnRh₂O₄ and Ag, and those of Bi and V increased at the boundary of Ag and Bi₄V₂O₁₁. Accordingly, the percentage of Ag increased and decreased at the interface between ZnRh₂O₄ and Ag, and Ag and Bi₄V₂O₁₁, Note that the Ag particle size ranged from ~200 to 500 nm.

Fig. S5 STEM image of $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ (a). In (a), the lines along which elemental analyses were performed are shown (A₁ to A₂ and B₁ to B₂). Atomic percentages of Ag, Bi, V, Zn, and Rh measured from the area of $ZnRh_2O_4$ (A₁) to that of $Bi_4V_2O_{11}$ (A₂) (b) and those along the line from B₁ to B₂ (c).

ESI. 5 Complementary water-splitting tests (Fig. S6).

Figure S6 shows the time courses of H_2 and O_2 evolution using only $Bi_4V_2O_{11}$ powder from pure water under irradiation with identical visible light to the case shown in Fig. 7. Neither H_2 nor O_2 was detected. Therefore, $Bi_4V_2O_{11}$ cannot split pure water by itself.

Fig. S6 Time courses of H_2 (red circles) and O_2 (blue circles) evolution from pure water in the presence of $Bi_4V_2O_{11}$ under irradiation with a xenon lamp equipped with a Y-44 filter.

ESI. 6 Complementary tests of half reaction of water (Fig. S7) and water-splitting (Figs. S8, S9).

As will be shown in Scheme S1a, the conduction band bottom potential of $Bi_4V_2O_{11}$ (~0.73 V vs. SHE) is more positive than that of H₂ evolution, thus it is unable to evolve H₂ thermodynamically. To confirm this, O₂ evolution was monitored in the presence of $Bi_4V_2O_{11}$ (60 mg) with the aid of methanol (20 vol%) as a sacrificial agent (from the aqueous methanol solution, 12 mL) irradiated with visible light from the xenon lamp equipped with Y-44 filter (> 420 nm) in Fig. S7. As expected, H₂ was not detected at all, demonstrating that $Bi_4V_2O_{11}$ cannot be the H₂ evolution site in the ZnRh₂O₄/Ag/Bi₄V₂O₁₁ system.

Similarly, the valence band top potential of $ZnRh_2O_4$ (~0.056–0.232 V vs. SHE) is more negative than that of O_2 evolution, thus it is unable to evolve O_2 thermodynamically. We have already reported that H_2 was observed in the presence of $ZnRh_2O_4$ with the aid of formaldehyde, but not observed with the aid of methanol (ref. 31). This clearly indicates that $ZnRh_2O_4$ even cannot oxidize methanol. Then, we conclude that $ZnRh_2O_4$ even cannot be the O_2 evolution site in the $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ system.

Fig. S7 Time courses of H_2 evolution (red circles) over $Bi_4V_2O_{11}$ photocatalyst irradiated with visible light (> 420 nm) from the aqueous methanol solution as a sacrificial agent. O_2 evolution (blue circles) was also measured, but was not detected at all.

 $ZnRh_2O_4-Bi_4V_2O_{11}$ hetero-junction photocatalyst ($ZnRh_2O_4/Bi_4V_2O_{11}$) was also prepared using the same procedure, except that Ag₂O powder was excluded from the wet-ball milling process. We examined the pure-water splitting over the $ZnRh_2O_4/Bi_4V_2O_{11}$ photocatalyst irradiated with visible light under the identical conditions in Fig. 6a. As shown in Fig. S8, O₂ was not observed and only a negligible amount of H₂ was observed during the measurement period. In Fig. S8, H₂ and O₂ evolution data from pure water over $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ irradiated with visible light (>420 nm) were also plotted (the same data marked with solid red and solid blue in Fig. 6a). The results clearly indicated that Ag had an important role in the overall water splitting reaction.

Fig. S8 Time courses of photocatalytic evolution of H_2 (open red) and O_2 (open blue) from pure water over $ZnRh_2O_4/Bi_4V_2O_{11}$ (60 mg) irradiated with visible light (>420 nm). The amounts of H_2 and O_2 from pure water over $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ are also plotted (closed red and blue, the same as plots in Fig. 6a).

Next we also examined the pure-water splitting by the mixture of $ZnRh_2O_4$, Ag, and $Bi_4V_2O_{11}$ (molar ratio of 6:1:3) irradiated with visible light under the identical conditions in Fig. 6a and Fig. S8. As shown in Fig. S9, neither H_2 nor O_2 was observed at all. In Figs. 6a, S8 and S9, we clearly demonstrated that H_2 and O_2 were evolved only when we prepared the Ag-inserted hetero-junction photocatalyst ($ZnRh_2O_4/Ag/Bi_4V_2O_{11}$) and also Ag had an important role in the overall water splitting reaction.

Fig. S9 Time courses of photocatalytic evolution of H_2 (open red) and O_2 (open blue) from pure water over the mixture of ZnRh₂O₄, Ag, and Bi₄V₂O₁₁ (molar ratio of 6:1:3, 60 mg in total) irradiated with visible light (>420 nm).

ESI. 7 Complementary data related to water-splitting tests using GCMS (Table S1).

We performed quantitative analyses using the GCMS results after 48, 58.5, 72, and 88 h irradiation with the 700 nm LED as shown in Table S1. In the system, we concluded that the unexpectedly detected N₂ originated from external air that entered the GCMS system in our previous report.^{23,26} Thus, the ¹⁶O¹⁶O value was calculated (¹⁶O¹⁶O (calc.)) from the experimental values (¹⁶O¹⁶O (obs.), ¹⁴N¹⁴N (obs.)), as shown in Table S1, using the equation ¹⁶O¹⁶O (calc.) = ¹⁶O¹⁶O (obs.) – (¹⁴N¹⁴N (obs.) / 0.78) × 0.21.

Table S1GCMS results of water splitting by $ZnRh_2O_4/Ag/Bi_4V_2O_{11}$ irradiated with 700 nm LED in watercontaining 33% H218O for 48, 58.5, 72, and 88 h.

Irradiation	¹⁴ N ¹⁴ N (obs.)	¹⁶ O ¹⁶ O (obs.)	¹⁶ O ¹⁸ O (obs.)	¹⁸ O ¹⁸ O (obs.)	¹⁶ O ¹⁶ O (calc.)	Total O ₂ *)
time / h	/ µmol	/ µmol				
48	4.30×10-1	1.42×10-1	1.72×10-2	4.33×10-3	2.11×10-2	4.26×10-2
58.5	5.29×10 ⁻¹	1.84×10 ⁻¹	2.70×10-2	6.55×10-3	4.13×10-2	7.19×10-2
72	6.00×10 ⁻¹	2.33×10 ⁻¹	5.15×10 ⁻²	1.34×10-2	7.09×10 ⁻²	1.36×10-1
88	6.89×10 ⁻¹	2.78×10-1	8.98×10 ⁻²	2.14×10-2	9.24×10 ⁻²	2.04×10-1

*) total $O_2 = {}^{16}O{}^{16}O (calc.) + {}^{16}O{}^{18}O (obs.) + {}^{18}O{}^{18}O (obs.)$

Note that the ratio of ¹⁶O¹⁶O (calc.):¹⁶O¹⁸O (obs.):¹⁸O¹⁸O (obs.) was 4.08:3.97:0.946 after 88 h irradiation.

ESI. 8 The energy band diagram of ZnRh₂O₄/Ag/Bi₄V₂O₁₁ and charge transfer processes (Schemes S1a, S1b).

The band edge positions of $ZnRh_2O_4$, Ag, and $Bi_4V_2O_{11}$ are described in Scheme 1a. Those of $ZnRh_2O_4$ and Ag were determined in our previous paper.²⁶ That of $Bi_4V_2O_{11}$ is described in the main text. We measured the Seebeck coefficient (*S*) of $Bi_4V_2O_{11}$ and obtained a positive value, indicating that it is a p-type semiconductor (not shown here). The band alignments of $ZnRh_2O_4$, Ag, and $Bi_4V_2O_{11}$ before and after connecting Ag and $ZnRh_2O_4$, and Ag and $Bi_4V_2O_{11}$ are shown in Scheme S1b. The charge transfer processes are also included in Scheme S1b.

Scheme S1 Band edge positions of $ZnRh_2O_4$, Ag and $Bi_4V_2O_{11}$ (a) and their band alignments before and after connecting Ag and $ZnRh_2O_4$, and Ag and $Bi_4V_2O_{11}$ (b). The charge transfer processes are also shown in (b).