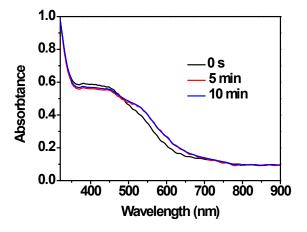

Supplementary information


Room-temperature blend-solvents-vapor annealing for high performance perovskite solar cells

Hao Yu¹, Xiaodong Liu¹, Yijun Xia¹, Qingqing Dong¹, Kaicheng Zhang¹, Zhaowei Wang¹, Yi Zhou^{1*}, Bo Song^{1*}, and Yongfang Li^{1,2*}

² Beijing National Laboratory for Molecular Sciences, Institute of Chemis-try, Chinese Academy of Sciences, Beijing, 100190, China.

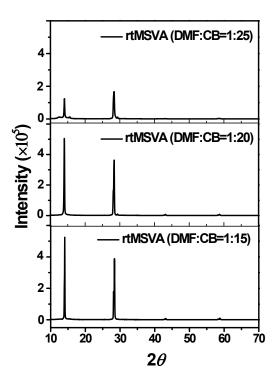


Figure S1. Color change of the MAPbI_{3-x}Cl_x thin films after solvent annealing at room temperature by the mixed solvents (DMF:CB = 1:20, v/v) or single solvent of DMF or CB.

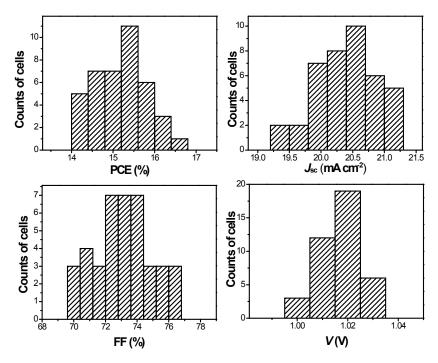


Figure S2. UV-vis absorption spectra of the MAPbI3-xClx thin films before and after CB vapor anneal-ing at room temperature for different times.

¹ Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

Figure S3. XRD patterns of the pero-TFs processed by the rtMSVA of the mixed DMF/CB solvents with different volume ratios.

Figure S4. Analysis of photovoltaic performances of the pero-SCs treated by rtMSVA for 40 devices.